CHEMISTRY TEACHERS FORUM OF KARNATAK UNIVERSITY AFFILIATED COLLEGES

CHEM-FORUM 2017-18

COMPREHENSIVE B.Sc. CHEMISTRY LABORATORY MANUAL

As per
Karnatak University Syllabus 2012-2013

Published by : CHEM-FORUM and Karnatak Science College, Dharwad on its Centenary Celebration

CHEMISTRY TEACHERS FORUM OF KARNATAK UNIVERSITY AFFILIATED COLLEGES

CHEM - FORUM

Chem- Forum Executive Committee: 2017-18

Dr. S. M. Tuwar President Karnatak Science College, Dharwad. Cell: 9449796557

Dr. C. S. Naik Joint Secretary
S.M.A.S.C. College, Ulga- Karwar. Cell: 9448679050

H. Manjunath Member
R.T.E.S. College, Ranebennur. Cell : 944856426

Dr. H.Y.Merwade Vice-President B. N. Degree College, Dandeli. Cell: 9448344996

Dr. Venka tesh Mutalik Treasurer J.S.S. College, Dharwad. Cell: 9448777011

Smt. S. M. Bangalore Member
K.L.E's J.T. College, Gadag. Cell : 9481527012

Dr. S.B.Sajjanar Secretary S.K.V.P. College, Hole - Alur. Cell: 9945555084

Dr.S.D. Dhumwad Member
Karnatak Science College,
Dharwad. Cell : 9449188294

Dr. S. N. Shetty Member
Dr. A. V. Baliga College,
Kumta. Cell : 9448996383

CHEMISTRY TEACHERS' FORUM OF KARNATAK UNIVERSITY AFFILIATED COLLEGES

CHEM - FORUM: 2017-18

B.SC. CHEMISTRY COMPREHENSIVE LABORATORY MANUAL

EDITORLAL BOARD

Inorganic Chemistry

1. $\operatorname{Dr}($ Smt $)$ M.S. Salunke

Chairperson
2. Dr. S. B. Sajjanar, Convener
3. Dr. S.D. Dhumwad
4. Prof . S. N. Shetty
5. Dr. A. M. Shirahatti

Organic Chemistry

1. Dr. H.Y.Merwade, Chairman
2. Dr. K.S.Katagi , Convener
3. Prof. H. H. Adavi
4. Prof. Shashikala Sherewad
5. Dr. Venkatesh Mutalik
6. Smt. Vimala G.

Physical Chemistry

1. Dr. S.M. Tuwar, Chairman
2. Dr. J. G. Baragi, Convener
3. Prof. S. H. Narashinavar
4. Dr. P. S. Kanavi
5. Dr. S. S. Kulkarni
6. Dr. Rajappa S. K.
7. Dr. Mahesh R.T.
Name of the Book : Comprehensive B.Sc. Chemistry Laboratory Manual
No. of pages in the book: 300
No. of copies printed : 150
Purpose of printing : To have common procedure to conduct B.Sc. Chemistry Practicals without any ambiguity.
Publication Coordinator: \quad President and Secretary, Chem - Forum: 2017-18.
Publication Convener : Dr. K. S. Katagi, Karnatak Science College, Dharwad Published by Chem - Forum : 2017-18 in association with Karnatak Science College, Dharwad On $22^{\text {nd }}$ June, 2018.
Coy Right : No copy right, it is an open access.
Books are distributed by Karnatak College, Dharwad to all the affiliated Colleges of Karnatak University 02 copies each as a service to the society with a motto of "Quality Education for All" on the occasion of its centenary celebration.

Foreword

Chemistry is an experimental science. The fundamental basis for Chemistry is experiments. It is through experiments that we study and explain certain phenomenon. Chemistry lives by experiments by combining or separating, by analysis or synthesizing different substances.

Experiments carried out in many undergraduate chemistry courses have not been upgraded for quite some time, while the situation has changed a lot in the leading universities in the country. The quality of experiments carried out in many B.Sc. Chemistry laboratories also remains substandard and rudimentary due to the outcome of lack of proper instruction material and infrastructure.

A Laboratory Manual prepared by Chemistry Teachers' Forum is enormously important for Chemistry education. This manual is an attempt to bring in tested, modern and interesting Chemistry experiments especially to undergraduate students of Karnatak University and to all Chemistry students in general. Eighty carefully described experiments show that you do not need a lot of sophisticated material or advanced equipment to teach students, especially undergraduates, how to do interesting experiments in chemistry.

For the future, it is important to teach students how to do Modern Chemistry. This laboratory manual is a valuable contribution to Undergraduate Chemistry Education. Each experiment has been carefully elaborated; materials, equipments and even time required for performing the experiments have also been listed. You will find a theoretical description of the background of the materials employed and practical uses of the different substances produced. This will be interesting especially for younger students who aim to become future experts in Chemistry.

Working with this laboratory manual will be a great pleasure and success for every teacher who wants to motivate interested and talented students.

Vidyanand Revankar

Chairman

Board of Studies in Chemistry
Karnatak University, Dharwad

PREACE

The idea of writing this manual came when we realized that our BSc. Course with Chemistry as Optional Subject do not have a cormon and comprehensive Laboratory Manual for all the experiments prescribed in the syllabi. In this direction all the Chemistry Teachers met in $24^{\text {th }}$ Annual Convention of Chem - Forum held on the $25^{\text {th }}$ May, 2018 and thereby resolved unanimously to prepare a single, properly structured book which guides us how to conduct the practicals for under graduate students effectively with a special emphasis to unambiguous This book is therefore an attempt to provide a single manual for the purpose.

The most important feature of this Manual is that it not only focuses on the procedure for all the experiments but also provides the instructions to the examiners along with questions to conduct the practical examinations. It can act as a lighthouse for examiners It also narrates the list of specific and commonly using reagents and methods of preparation with calculations.

Foremost on behalf of Chem - Forum I wish to express my indebtedness to Prof. Pramod B Gai, Hor'ble Vice Chancellor, Karnatak Uhiversity, Dharwad who inspired us to prepare this manuscript for the benefits of the students, teachers and lab-staff. I amgrateful to Prof. Pancharatna K, Dean, Faculty of Science, and Prof. V. K Revankar, Chairman, P.G. Department of Chemistry for their constant motivation and guidance.

I am deeply thankful to Dr (Sint) M S. Salunke and D. HY. Merwade, Chairpersons of Inorganic and Organic Sections respectively and their team along with the team menbers of Physical Section for preparing this manual in a record time of just 15 days.

I also owe my special thanks to all the members of Chem - Forumfor their splendid contributions to provide draft for this manual. This Manual would not have seen the light of day without the combined efforts of the Team of Chemistry Faculty of Karnatak University' affiliated Colleges especially the efforts of D. SB Sajjanar for coordinating with all the cormittees and contribution towards the development of this manual.

I sincerely thank D. C.F. Mulimani, Principal, Karnatak Science College, Dharwad for encouraging with financial support on the occasion of centenary celebration of Karnatak College. I am deeply thankful to Dr. K S. Katagi for his untiring zeal in designing the front cover and also getting the print copies on time.

I would like to thank the entire Chemistry Faculty of Karnatak Science College and J.SS College, Dharwad for their active participation in finalizing the draft. Hppe, all the Chemistry faculty members of affiliated colleges of Karnatak Uhiversity ensures a culture of good lab practices, examinations and lab safety in the colleges

Witten in a very simple and lucid language, the students, teachers and lab-staff should find this book extremely handy and useful. A complete e-version of this manual is available on the Karnatak Science College website (wuw.kscdacin) and Karnatak Uhiversity website too (wnwkudacin).

Though all the efforts have been made to make this book error free, yet same errors might have crept inadvertently. Suggestions from the readers for the improvement of the book are most welcome.

Fnally, I hope that this book will be helpful not only to the Karnatak Uhiversity's under graduate students but also for students of other Uhiversities where many of these experiments are induded in their syllabi.

Contents

Unit	Content	Page No.
	Part - I : Procedure for Chemistry Experiments: Semester wise	
1	Semester -I : Volumetric Analysis	1
2	Semester - II : Organic preparations and estimations	47
3	Semester - III: Physical Experiments (Non Instrumental)	84
4	Semester - IV : Semi Micro Qualitative Inorganic Analysis of salt mixtures	113
5	Semester - V : Organic qualitative analysis (Solid - Solid Mixture) : Paper -I	139
6	Semester - V : Physical Experiments (Instrument based) :Paper - II	162
7	Semester- VI : Gravimetric \& Volumetric Analysis; and preparations of complexes : Paper- I	185
8	Semester-VI:Organic qualitative analysis (Liquid- liquid Mixture):Paper- II	210
9	Semester-VI : Physical Experiments (Instrument based) : Paper - II	225
	Part - II : Preparation of Reagents	
10	Commonly used Laboratory Reagents	242
11	Specific reagents for Inorganic Experiments	248
12	Specific reagents for Organic Experiments	252
13	Specific reagents for Physical Experiments	254
	Part - III : Aim of the experiments in Frame of Questions	
14	General Instructions	258
15	Semester -I : Volumetric Analysis	271
16	Semester - II : Organic preparations and estimations	272
17	Semester - III: Physical Experiments (Non Instrumental)	275
18	Semester - IV : Semi Micro Qualitative Inorganic Analysis of salt mixtures	280
19	Semester -V : Organic qualitative analysis (Solid - Solid Mixture): Paper-I	280
20	Semester - V : Physical Experiments (Instrument based) :Paper - II	281
21	Semester- VI : Gravimetric \& Volumetric Analysis ; and preparations of complexes : Paper- I	285
22	Semester-VI:Organic qualitative analysis (Liquid- liquid Mixture):Paper- II	287
23	Semester-VI : Physical Experiments (Instrument based) : Paper - II	288
	Part - IV : Appendix	
24	Appendix 1: List of Teachers in various affiliated colleges	291
25	Appendix 2: List of Conventions held till 2017-18	295
26	Appendix 3 : Model Laboratory Tables	296

Prof．Pramod B．Gai
Vice－Chancellor ${ }^{\text {M．SC．，Ph．D．}}$

MESSAGE

It is my pleasure to write about the Comprehensive Laboratory Manual for the entire B．Sc Course with Chemistry as optional subject of Karnatak University． I congratulate all the members of the Editorial Board for translating this unique idea into action which is first of its kind in the annals of Karnatak University．This is a model worthy of emulation by all the Science departments which will go a long way in introducing Uniformity in teaching conducting and evaluation of practicals．

I must say that the Karnatak College which is celebrating its centenary year has lived up to its reputation in its selfless service to provide quality education for all the undergraduate students．

I congratulate all the concerned teachers of the Chem－Forum－a vibrant body of chemistry teachers for their concern and care towards the student community．I hope to see such Comprehensive／Educative manuals in other subjects which will serve the purpose of Quality Education to all especially in the remote areas of Karnatak University Jurisdiction．

I once again congratulate all the teachers from different Colleges and wish them all success．

	B.Sc I Sem Inorganic Chemistry Experiments
Total No of hours/week : 4Hrs	Total No of hours/week : 4Hrs
Total No. of Hours $: 54 \mathrm{Hrs}$	Total No. of Hours $: 54 \mathrm{Hrs}$

Sl. No.	CONTENTS	Page No.
1.	Calibration of glass wares (burette, pipette, volumetric flask) and weights (both grams and milligrams).Use of analytical balance.	2
2.	Preparation of standard oxalic acid solution, standardization of NaOH solution and determination of HCl in the given solution.	8
3.	Preparation of standard sodium carbonate solution, standardization of HCl solution and determination of sodium hydroxide in the given solution.	11
4.	Preparation of standard sodium carbonate solution, standardization of HCl solution and determination of sodium carbonate and sodium hydroxide in the given solution.	14
5	Preparation of standard oxalic acid solution, standardization of NaOH and KMnO_{4} solution and determination of mixture of oxalic acid and sulphuric acid in the given solution	18
6.	Preparation of standard sodium carbonate solution, standardization of HCl solution and determination of sodium carbonate and sodium bicarbonate in the given solution.	22
7.	Preparation of standard oxalic acid solution, standardization of KMnO_{4} solution and determination of Mohr's salt in the given solution.	27
8.	Preparation of standard Mohr's salt solution, standardization of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution and determination of Fe^{2+} ions in the given solution.	30
9.	Preparation of standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and determination of iodine in the given solution.	33
10	Determination of ferrous and ferric ions in a given mixture using standard potassium dichromate solution.	37
11	Preparation of standard ZnSO_{4} solution, standardization of EDTA solution and determination of Zn^{2+} in the given solution.	40
12	Determination of temporary, permanent and total hardness of water using standard EDTA solution.	43
Distribution of Marks:		

Distribution of Marks:	
Accuracy	
Standardization titration	10 marks
Main titration	16 marks
 Presentation	04 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks

Deduction of Marks for accuracy:	
Standardization titration:	Main titration:
$\pm 0.2 \mathrm{cc}-10$ marks	$\pm 0.2 \mathrm{cc}-16$ marks
$\pm 0.4 \mathrm{cc}-08$ marks	$\pm 0.4 \mathrm{cc}-14$ marks
$\pm 0.6 \mathrm{cc-}-06$ marks	$\pm 0.6 \mathrm{cc}-12$ marks
$\pm 0.8 \mathrm{cc}-04$ marks	$\pm 0.7 \mathrm{cc}-10$ marks
Above ± 0.8 cc- zero marks	$\pm 0.8 \mathrm{cc}-08$ marks
	$\pm 0.9 \mathrm{cc-} 06$ marks
	above $\pm 1.0-$ zero
	mark

1. CALIBRATION OF GLASSWARE AND WEIGHTS USING CHEMICAL BALANCE

Aim: To calibrate the glass wares (pipette, burette and volumetric flask) and weights (both grams and milligrams) and to use the chemical balance.

Apparatus: Pipette, burette, conical flasks, volumetric flask, funnel, beaker etc.
Calibration of glass wares: In laboratory work a measuring flask, pipette or burettes are used in volumetric experiments. For accurate knowledge of the volume of liquids taken by these, the glassware needs calibration.

Pipettes: Two types of pipettes, volumetric and graduated (or measuring) are available. A volumetric pipette is meant for highly accurate work whereas a graduated pipette is not very accurate. A volumetric pipette is an accurate volume conveyor and unless it is properly used, the volumes discharged by it will not be constant. $10 \mathrm{cc}, 25 \mathrm{cc} \& 50 \mathrm{cc}$ pipettes will have the respective delivery times of 20 seconds, 30 seconds \& 35 seconds; if the pipette is forced to discharge too rapidly, the discharged volume will vary.

A pipette is always held vertical and the liquid is allowed to drain itself out. When the liquid is allowed to drain out, the last drop would not be forced out either by blowing or by warming the bulb; however, the jet end is brought in contact with the sides of the beaker or conical flask is as to enable any last drop portion which may freely flow out. This procedure ensures that always the same constant volume is drained out of the pipette.
Calibration of pipettes ($\mathbf{1 0} \mathbf{c c} \& 25 \mathrm{cc}$)

1. 10 cc and 25 cc pipettes are rinsed with chromic acid mixture and dipped in it for overnight.
2. Both of them are washed thoroughly and then rinsed with distilled water.
3. Distilled water is sucked up in to 10 cc pipette up to the mark and it is then released in to a previously weighed clean \& dry conical flask.
4. The time required for the release of last drop from the pipette is noted down.
5. The mass of the flask along with water is determined.
6. The volume of the water is found with the help of mass and density formula.

$$
\text { Volume }=\frac{\text { Mass }}{\text { Density }}
$$

7. The same procedure is repeated for 25 cc pipette also.

Observations

1. Mass of empty and dry conical flask $=\mathrm{M}_{1}=--\mathrm{g}$
2. Mass of conical flask + water $\quad \mathrm{M}_{2}=--\mathrm{g}$
3. Mass of water $=\mathrm{M}_{2}-\mathrm{M}_{1}=---\mathrm{g}$

Calibration of burette

1. Burette is filled with chromic acid mixture and kept it overnight and thoroughly washed with water.
2. Burette is finally filled with distilled water. Water is run out until the meniscus is exactly on the zero mark and out flow is then stopped.
3. 5 cc of water from the burette (i.e. from 0-5) released in to a previously weighed clean \& dry conical flask.
4. The mass of conical flask with water is determined and mass of 5 cc water is calculated.
5. Again 5 cc of water from the burette from $5-10$ is released in to the same conical flask and weighed it again and mass of 5 cc water is calculated.
6. This process is repeated up to 50 cc .
7. The density of water at room temperature is noted down.
8. The volume of water is calculated by the formula, Volume $=\frac{\text { Mass }}{\text { Density }}$
9. The volume correction is noted down.

Mass of 1 litre of water $\boldsymbol{\&}$ volume of $\mathbf{1 g}$ of water at various temperatures

Temp (${ }^{\circ}$ C)	Density (g/cc)	Mass	Volume of 1 g of water	Temp (${ }^{\circ}$ C)	Density (g/cc)	Mass	Volume of 1 g of water
20	0.9982	997.18	1.0028	24	0.9975	996.38	1.0036
21	0.9979	997.00	1.0030	25	0.9970	996.17	1.0038
22	0.9977	996.80	1.0032	26	0.9967	995.93	1.0041
23	0.9975	996.60	1.0034	27	0.9965	995.69	1.0043

Observations

1. Laboratory temperature $=---{ }^{0} \mathrm{C}$
2. Density of water at laboratory temperature $=$ \qquad g/cc

Burette levels	Mass of water	Volume of water	Correction
$0-5$			
$5-10$			
$10-15$			
$15-20$			
$20-25$			
$25-30$			
$30-35$			
$35-40$			
$40-45$			
$45-50$			

Calibration of measuring flasks ($\mathbf{2 5 0} \mathbf{~ c c} \boldsymbol{\&} \mathbf{1 0 0} \mathbf{c c}$) relative to a burette

1. 250 cc Measuring flask is filled with chromic acid mixture and kept it overnight and thoroughly washed with water and dried.
2. The measuring flask is filled with distilled water that is added from the calibrated burette.
3. How much water is required to fill up to the mark is noted down.
4. From the mass of the water volume is calculated and hence the volume of standard flask is calibrated. Or
5. 100 cc Measuring flask is filled with chromic acid mixture and kept it overnight and thoroughly washed with water and dried.
6. 100 cc Measuring flask is weighed and the mass is noted down.
7. The measuring flask is filled with distilled water up to the mark and the adhered drops of water are removed by absorbing with filter paper.
8. Measuring flask containing distilled water is weighed again and the mass is noted down.
9. Using the mass of water filled up in the measuring flask volume is calculated.

Observations

1. Mass of empty and dry measuring flask $=\mathrm{M}_{1}=---\mathrm{g}$
2. Mass of measuring flask + water $\quad \mathrm{M}_{2}=---\mathrm{g}$
3. Mass of water $=\mathrm{M}_{2}-\mathrm{M}_{1}=---\mathrm{g}$
4. Laboratory temperature $=---{ }^{\circ} \mathrm{C}$
5. Density of water at laboratory temperature $=\ldots . \mathrm{g} / \mathrm{cc}$

Calibration of weights

Weights should be calibrated in order to detect any inaccuracies in weights themselves. This is especially so in the case of fractional weights sold as separate unit. The weights used to be weighed for weighing on a chemical balance should be calibrated. i.e. their irregularities should be checked and corrected by comparing against the weights of standard weight box.

1. For calibration work the balance is first adjusted to zero resting point and the weights to be calibrated are compared one by one against the corresponding weights of standard weight box.
2. The gram weights are usually provided with screw top. Their irregularities can be corrected by unscrewing the top and altering the fine sand or minute lead shots in the cavity.
3. For milligrams it is convenient to select only the good once and reject those showing variations. However heavier milligrams can be reduced in weights by rubbing against emery paper or cutting with a pair of scissors.

Fractional weights	Corrected weight
500 mg	
200 mg	
200 mg	
100 mg	
50 mg	
20 mg	
20 mg	
10 mg	

Use of Chemical balance

A chemical balance is a device used to measure the mass of an object(substance) accurately by comparing its weight with that of the standard weights from a weight box.
FIGURE: It consists of following parts.

1. Beam of balance
2. Fulcrum of agate knife edge
3. Balance pans
4. Stirrup with double hooks
5. Adjustment screws
6. Pointer
7. Pointer scale
8. Balance case
9. Front opening for the case
10. Levelling screws
11. Pointed peg
12. Plumb line
13. Index
14. Handle for rider movement
15. Knob

Main scale division
Subscale division

Weight box: Two weight boxes are used 1. Gram weight box. 2.Fractoinal weight box.
Gram weight box consists brass weights coated with nichrome of $1,2,2,5,10,20,20,50 \& 100$ grams

Fractional weight box consists $10,20,2050,100,200,200,500$ milli grams \& a rider of 10 mg

Use of rider: The weights less than $10 \mathrm{mg}(0.0010 \mathrm{~g})$ can be avoided conveniently by the use of rider. The beam of balance is divided in to ten divisions on either side and each division is subdivided in to 5 . When the rider is placed on $1^{\text {st }}$ subdivision next to 0 , it weighs $0.0002 \mathrm{~g}, 2^{\text {nd }} 0.0004,3^{\text {rd }} 0.0006$ etc. When it is place on main division 1 , it weighs 0.0010 g . similarly if placed on $2^{\text {nd }}, 3^{\text {rd }}$ etc it weighs $0.002,0.003 \mathrm{~g}$ respectively and if placed on $10^{\text {th }}$ main division then the weight is 0.0100 g .

Procedure (B): I. Adjustment of Balance

1. The leveling screws at the base are adjusted so that the plumb point suspended behind the pillar is exactly above the index below. This indicates that the balance is perfectly horizontal.
2. The knob is turned gently so that the beam is raised and the pointer oscillates on the pointer scale. If the pointer oscillates equally on both sides of the pointer scale, the balance is said to be adjusted. Otherwise, knob is turned back and the adjustment screw nuts are turned suitably. The movement of the pointer is again checked for its oscillation equally on either side of the pointer scale.

II.To find the mass of an object:

1. The object to be weighed is placed on the left side pan when the balance is at rest. The weights are placed on the right side pan in the descending order using forceps. Every time after placing the weight, the knob is turned gently to see whether the pointer moves equally on either sides of the pointer scale. The least weight that is used in weighing is 10 mg . When the last 10 mg weight is less than the actual weight of the substance, the rider is placed on any of the main scale or sub scale division on the beam so that the pointer moves equally on either side of the pointer scale. This completes the weighing of the given object.
2. The weights placed on the pan as well as the weight due to the rider together form the weight of the object. If the rider is placed to the right part of the beam, its weight is added to the weight in the pan. If the rider is placed on the left pan its weight is deducted from the weight in the pan. This gives the accurate weight of the object.

Note:

1. The knob should be turned only gently. Otherwise the stirrups as well as beams will be dislocated due to sudden jerk.
2. Weights from the weight box as well as milligram weights should be transferred using forceps only.
3. Hot articles should not be weighed as they spoil the pans.
4. The doors should be closed when the oscillation of the pointer is to be observed.
5. The balance beam should be brought to rest while transferring the objects or weights.
6. Chemical substances should be weighed using weighing bottles only.

OBSERVATION:

Gram	Rider weight 10 mg \longleftrightarrow			
5	0	0	0	
1	0	0	0	
	5	0	0	
	1	0	0	
		1	0	
6	6	3	5	6

RESULT: The accurate mass of the object (watch glass) is $\mathbf{6 . 6 3 5 6} \mathrm{g}$

Use of Digital or Electronic Balance

1. Place the electronic balance on a flat \& stable surface table
2. Press the "ON" button and wait for the balance to show zeroes on the digital screen.
3. Use a container (like weighing bottle, watch glass or beaker) for the object (never place directly on the pan.
4. Note down the weight of the container and press "TARE" or "ZERO" button to automatically deduct the weight of the container from the future calculations. The digital display will show zero again, indicating that the container's mass is stored in the balance memory.
5. Carefully add the substance to the container. Ideally this is done with the container still on the platform, but it may be removed if necessary.
6. Place the container with the substance back on the balance platform if necessary and record the mass as indicated by the digital display.

2. DETERMINATION OF HYDROCHLORIC ACID

Aim: To Prepare the standard oxalic acid solution, standardization of sodium hydroxide solution and to determine the hydrochloric acid in the given solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Oxalic acid, hydrochloric acid, sodium hydroxide, phenolphthalein indicator, etc.
Theory: Though Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right.$. Mol.wt $\left.=126\right)$ is not a primary standard (satisfactory secondary standard) but due to the stability, non-hygroscopic \& solubility. It is a dibasic acid with the gram equivalent mass (E) as 63 . The amount of oxalic acid crystals to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of oxalic acid is used to standardize the secondary standard solutions like sodium hydroxide, potassium permanganate etc.

The given sodium hydroxide solution is standardized by titrating against the standard solution of oxalic acid using phenolphthalein as an indicator till the colour changes from colourless to pale pink.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

The amount of hydrochloric acid present in the given solution is determined by titrating against the standard solution of sodium hydroxide using phenolphthalein as an indicator till the colour changes from colourless to pale pink.

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Procedure

A. Preparation of standard (0.05 N) oxalic acid solution:

Accurately weighed $(0.7875 \mathrm{~g})$ oxalic acid is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of sodium hydroxide solution:

The burette is washed with water, rinsed with the given sodium hydroxide solution and filled with the same solution up to the zero mark (Avoid air bubbles). The pipette is washed with distilled water and rinsed with oxalic acid solution. The given conical flask is washed with distilled water.
Exactly 25 cc of oxalic acid solution is pipetted out into the clean conical flask. Two drops of phenolphthalein indicator is added and the solution is titrated against oxalic acid solution till the colour changes from colourless to pale pink. The burette reading is noted. The titration is repeated to get concordant values and determined exact normality of sodium hydroxide solution.

C. Determination of Hydrochloric acid:

The hydrochloric acid solution supplied in the 250 cc volumetric flask is diluted up to the mark with distilled water. It is shaken well for uniform concentration or Sample solution of HCl may be directly supplied. 25 cc of this solution is pipetted out into a clean conical flask and 2 to 3 drops of phenolphthalein indicator is added and titrated against sodium hydroxide solution till the colour changes from colourless to pale pink. The titration is repeated to get concordant values. Using appropriate formula Hydrochloric acid in the given solution is determined.

Observations and Calculation

A. Preparation of 250 cc of standard ($\mathbf{(0 . 0 5 N}$) oxalic acid solution

The amount of oxalic acid required $=w=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{6 3} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=0.7875 \mathbf{g}$
Mass of empty watch glass : $\mathrm{m}_{1}=$........... g
Mass of watch glass + oxalic acid : $\mathrm{m}_{2}=\ldots \ldots \mathrm{g}$
Mass of oxalic acid
$:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=$ \qquad

If the value of mass of oxalic acid weighed differs from 0.7875 g then, normality of oxalic acid solution is calculated by
\therefore Normality of oxalic acid solution $\quad=\frac{\text { Mass of oxalic acid } \mathrm{x} 4}{\text { Eq.mass of oxalic acid }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{63}=\ldots \ldots \ldots \ldots \ldots . \mathrm{N}
$$

B. Standardization of Sodium hydroxide:

Solution taken in the burette
: NaOH solution
Solution taken in the conical flask
: 25 cc oxalic acid solution
Indicator used
: Phenolphthalein
Colour change at the end point
: Colourless to pale pink
Tabulations

Trial No	Burette readings (cc)		Volume of NaOH	Concordant added (cc) burette reading in cc (CBR)
	Final reading(B)			
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{NaOH} \quad \mathrm{V}_{1}=$ volume of $\mathrm{NaOH}(\mathrm{CBR})$
$\mathrm{N}_{2}=$ Normality of oxalic acid and $\quad \mathrm{V}_{2}=$ volume of oxalic acid(25cc)
Normality of $\mathrm{NaOH}, \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

C. Determination of the amount of hydrochloric acid:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: NaOH solution
: 25 cc HCl solution
: Phenolphthalein
: Colourless to pale pink

Tabulations

Trial No	Burette readings (cc)		Volume of NaOH added (cc) (B - A)	
	Initial reading (A)	Final reading (B)	reading in cc (CBR)	
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of HCl
$\mathrm{V}_{1}=$ Volume of $\mathrm{HCl}=25 \mathrm{cc}$
$\mathrm{N}_{2}=$ Normality of NaOH
$\mathrm{V}_{2}=$ Volume of $\mathrm{NaOH}(\mathrm{CBR})$

Therefore, Normality of $\mathrm{HCl}, \mathrm{N}_{1}=\frac{\mathbf{N}_{2} \mathbf{V}_{2}}{\mathbf{v}_{\mathbf{1}}}=$ \qquad N

We know that equivalent mass of $\mathrm{HCl}=36.5$

Amount of HCl present in dm^{3} of solution (X) $\quad=$ Normality of $\mathrm{HCl} \times$ Eq.mass of HCl
=.......... g
Amount of HCl present in 250 cc of solution $=\frac{\mathrm{x}}{4}$
$=. \mathrm{g}$

Result:

1.	Normality of oxalic acid solution	$\ldots \ldots \mathrm{N}$
2.	Normality of Sodium hydroxide solution	$\ldots \ldots \ldots \mathrm{N}$
3.	Normality Hydrochloric acid solution	$\ldots \ldots \mathrm{N}$
4.	Amount of Hydrochloric acid present in 250 cc of solution	$\ldots \ldots \mathrm{g}$

3. DETERMINATION OF SODIUM HYDROXIDE

Aim: To prepare of standard sodium carbonate solution, standardize hydrochloric acid solution and to determine sodium hydroxide in the given solution.

Apparatus : Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Sodium carbonate, hydrochloric acid, sodium hydroxide, phenolphthalein indicator methyl red indicator etc.

Theory : Sodium carbonate (Mol.wt $=106$) is referred as the primary standard in the titrimetric analysis with a gram equivalent mass (E) as 53.It produces weakly basic solution on dissolution in water. The amount of sodium carbonate to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of sodium carbonate is used to standardize the secondary standard solutions like hydrochloric acid.

The given hydrochloric acid solution is standardized by titrating against the standard solution of sodium carbonate using methyl red as an indicator till the colour changes from yellow to red.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
$$

The amount of sodium hydroxide present in the given solution is determined by titrating against the standard solution of hydrochloric acid using phenolphthalein as an indicator till the colour changes from pink to colourless.

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Procedure:

A. Preparation of standard (0.05 N) Sodium carbonate solution:

Accurately weighed $(0.6625 \mathrm{~g})$ sodium carbonate is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of hydrochloric acid solution:

The burette is washed with water, rinsed with the given hydrochloric acid solution and filled with the same solution up to the zero mark (Avoid air bubbles). The pipette is washed with distilled water and rinsed with sodium carbonate solution. The given conical flask is washed with distilled water.

Exactly 25 cc of sodium carbonate solution is pipetted out into the clean conical flask. Two drops of methyl red indicator is added and the solution is titrated against sodium carbonate solution till the colour changes from yellow to red. The burette reading is noted. The titration is repeated to get concordant values and exact normality of hydrochloric acid solution is calculated.

C. Determination of the amount of sodium hydroxide:

The sodium hydroxide solution supplied in the 250 cc volumetric flask is diluted up to the mark with distilled water. It is shaken well for uniform concentration or sample solution of NaOH may be directly supplied. 25 cc of this solution is pipetted out into a clean conical flask and 2 to 3 drops of phenolphthalein indicator is added and titrated against of hydrochloric acid solution till the colour changes from pink to colourless. The titration is repeated to get concordant values. Using appropriate formula sodium hydroxide in the given solution is determined.

Observations and Calculation

A. Preparation of 250 cc of standard ($\mathbf{0 . 0 5 N}$) sodium carbonate solution

The amount of sodium carbonate required

$$
=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.05 \times 53 \times 250}{1000}=0.6625 \mathrm{~g}
$$

Mass of empty watch glass
$: \mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of watch glass + sodium carbonate
: $\mathrm{m}_{2}=$ \qquad
Mass of sodium carbonate

$$
:\left(m_{2}-m_{1}\right)=--------g
$$

If the value of mass of sodium carbonate weighed differs from 0.6625 g then, normality of sodium carbonate solution is calculated by
\therefore Normality of sodium carbonate solution $=\frac{\text { Mass of sod. carbonate } \mathrm{x} 4}{\text { Eq.mass of sod.carbonate }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{53}=\ldots \ldots . \mathrm{N}
$$

B. Standardization of hydrochloric acid:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: HCl solution
: 25 cc of sodium carbonate
: Methyl red
: Yellow to red

Tabulations

Trial				
No	Burette readings (cc)		Volume of HCl added (cc) $(\mathrm{B}-\mathrm{A})$	Concordant burette reading in cc (CBR)
1	Initial reading (A)	Final reading (B)		
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of HCl
$\mathrm{N}_{2}=$ Normality of sodium carbonate and
$\mathrm{V}_{1}=$ Volume of $\mathrm{HCl}(\mathrm{CBR})$
$\mathrm{V}_{2}=$ Volume of sodium carbonate

Therefore, Normality of $\mathrm{HCl}, \quad \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

C. Determination of Sodium hydroxide:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: HCl solution
: 25 cc of NaOH solution
: Phenolphthalein
: Pink to colourless

Tabulations

| Trial | Burette readings (cc) | | Volume of HCl
 No | Initial reading
 (A) |
| :---: | :---: | :---: | :---: | :---: | Final reading (B) | Concordant burette |
| :---: |
| ($\mathrm{B}-\mathrm{A})$ | | reading in cc
 (CBR) |
| :---: |
| 1 |

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{NaOH} \quad \mathrm{V}_{1}=$ Volume of $\mathrm{NaOH}(25)$
$\mathrm{N}_{2}=$ Normality of HCl and $\quad \mathrm{V}_{2}=$ Volume of $\mathrm{HCl}(\mathrm{CBR})$

Therefore, Normality of $\mathrm{NaOH}, \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

We know that equivalent mass of $\mathrm{NaOH}=40$
Amount of NaOH present in dm^{3} of solution $(\mathrm{X})=$ Normality of $\mathrm{NaOH} \times$ Eq. mass of NaOH

$$
=. \mathrm{g}
$$

Amount of NaOH present in 250 cc of solution $=\frac{\mathrm{X}}{4}$

$$
=. \mathrm{g}
$$

Result:

1.	Normality of sodium carbonate solution	$\ldots \ldots \mathrm{N}$
2.	Normality of hydrochloric acid solution	$\ldots \ldots \mathrm{N}$
3.	Normality of sodium hydroxide solution	$\ldots \mathrm{N}$
4.	Amount of sodium hydroxide present in 250 cc of solution	$\ldots \mathrm{g}$

4. DETERMINATION OF SODIUM CARBONATE AND SODIUM HYDROXIDE FROM THE MIXTURE

Aim: To prepare the standard sodium carbonate solution, standardize hydrochloric acid solution and to determine sodium carbonate and sodium hydroxide from their mixture of the solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Sodium carbonate, hydrochloric acid, phenolphthalein indicator and methyl orange, etc.
Theory: Sodium carbonate (Mol.wt. =106) is referred as the primary standard in the titrimetric analysis with the gram equivalent mass (E) of 53 and forms weakly basic solution in water. The amount of sodium carbonate to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of sodium carbonate is used to standardize the secondary standard solutions like hydrochloric acid.

The given hydrochloric acid solution is standardized by titrating against the standard solution of sodium carbonate using phenolphthalein as an indicator till the colour changes from pink to colourless.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
$$

The sodium carbonate and sodium hydroxide present in the given solution is determined by titrating against the standard solution of hydrochloric acid by the selective use of indicators. The sodium hydroxide undergoes complete neutralisation with HCl to form NaCl , where as sodium carbonate reacts with HCl to form first NaHCO_{3} and then NaCl . The phenolphthalein is added as first indicator which decolorizes its pink colour in alkaline medium when NaOH and half $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are neutralised $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ turns to NaHCO_{3}). The NaHCO_{3} is slightly acidic in nature ($\mathrm{pH}=4$); hence phenolphthalein is not a suitable indicator for its determination. Therefore, methyl orange is used as the second indicator which shows the complete neutralisation $\left(\mathrm{NaHCO}_{3}\right.$ turns to NaCl$)$ of solution of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ mixture

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{NaHCO}_{3} \\
& \mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
\end{aligned}
$$

Procedure:

A. Preparation of standard (0.1 N) Sodium carbonate solution:

Accurately weighed $(1.325 \mathrm{~g})$ sodium carbonate is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of hydrochloric acid solution:

The burette is washed with water, rinsed with the given hydrochloric acid solution and filled with the same solution up to the zero mark (Avoid air bubbles). The pipette is washed with distilled water and rinsed with sodium carbonate solution. The given conical flask is washed with distilled water. Exactly 25 cc of sodium carbonate solution is pipetted out into the clean conical flask. Two drops of phenolphthalein indicator is added and the solution is titrated against sodium carbonate solution till the colour changes from pink to colourless. The burette reading is noted. The titration is repeated to get concordant values and determined exact strengtg(normality) of hydrochloric acid solution.

C. Determination of sodium carbonate and sodium hydroxide from their mixture of the solution:

The mixture of sodium hydroxide and sodium carbonate solution supplied in the 250 cc volumetric flask is diluted up to the mark with distilled water or ready mixture of the solution may be directly supplied. 25 cc of this solution is pipetted out into a clean conical flask and 2 to 3 drops of phenolphthalein indicator is added and titrated against hydrochloric acid solution till the colour changes from pink to colourless. The burette reading is noted as V_{1}. The titration is further continued by adding 2-3 drops of methyl orange indicator till the colour changes from yellow to red. The burette reading is noted as V_{2}. The above procedure repeated to get concordant values.

Using appropriate formula sodium carbonate and sodium hydroxide from the given mixture is determined.

Observations and Calculation

A. Preparation of 250 cc of standard (0.1 N) sodium carbonate solution

The amount of sodium carbonate required $==\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 1} \times \mathbf{5 3} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=1.325 \mathbf{g}$
Mass of empty watch glass $\quad: \mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of watch glass + sodium carbonate $: \mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of sodium carbonate $\quad\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=--------\mathrm{g}$
If the value of mass of sodium carbonate weighed differs from 1.325 g then, normality of sodium carbonate solution is calculated by
\therefore Normality of sodium carbonate solution $\quad=\frac{\text { Mass of sod. carbonate } \mathrm{x} 4}{\text { Eq.mass of sod.carbonate }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{53}=\ldots \ldots \ldots \ldots . . \mathrm{N}
$$

B. Standardization of hydrochloric acid:

Solution taken in the burette : HCl solution
Solution taken in the conical flask : 25 cc of sodium carbonate
Indicator used : Methyl red
Colour change at the end point : Yellow to orange red
Tabulations

Trial No	Burette readings (cc)		Volume of HCl added (B $-A)$ (cc)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{HCl} \quad \mathrm{V}_{1}=$ Volume of $\mathrm{HCl}(\mathrm{CBR})$
$\mathrm{N}_{2}=$ Normality of sodium carbonate and $\quad \mathrm{V}_{2}=$ volume of sodium carbonate
Therefore, Normality of $\mathrm{HCl}, \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N
C. Determination of sodium carbonate and sodium hydroxide from their mixture of the solution:

Solution taken in the burette
Solution taken in the conical flask Indicator used

Colour change at the end point
: HCl solution
: 25 cc of mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
: Phenolphthalein for first stage \& methyl orange for second stage
:For first stage Pink to colourless for second stage yellow to red

Tabulations I stage (with Phenolphthalein) $\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{NaH} \mathrm{CO} 3
$$

Trial No	Burette readings (cc)		Volume of HCl added (B $-A)$ $(c c)$	Concordant burette reading in cc $(C B R)$
	Initial reading (A)	Final reading (B)		$\mathrm{CBR}=\mathrm{V}_{1} \mathrm{cc}$
1	0.0			
2	0.0			
3	0.0			

II stage (with Methyl red) $\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$

Trial No	Burette readings (cc)		Volume of HCl added ($\mathrm{B}-\mathrm{A}$) (cc)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	Final Level of I stage			$\mathrm{CBR}=\mathrm{V}_{2} \mathrm{cc}$
2	,,			
3				

Concordant burette reading for $\mathrm{V}_{1}=\ldots \mathrm{cc} \&$ for $\mathrm{V}_{2}=\ldots \mathrm{cc}$

Calculations :

Determination of amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

V1: Volume of HCl used for complete neutralization of NaOH and half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (conversion of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to NaHCO_{3})
\mathbf{V}_{2} : Volume of HCl used for half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
\therefore Volume of HCl required for half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad=\mathrm{V}_{2}-\mathrm{V}_{1}=$....c.c.
\therefore Volume of HCl required for complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad 2\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=$..c.c.
$\mathrm{N}_{\mathbf{1}}=\frac{\mathbf{N}_{2} \mathbf{V}_{2}}{\mathbf{V}_{\mathbf{1}}}=\mathrm{N}_{\text {Sod carbonate }}=\frac{\mathbf{N}_{\mathbf{H C l}} \times \mathbf{V}_{\mathrm{HCl}}}{\mathbf{V}_{\text {Sod.carbonate }}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times 2\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{25}=. . \mathrm{N}$
\therefore Grams per litre of sodium carbonate $=\mathrm{N}_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \times$ equivalent mass of $\mathbf{N a}_{2} \mathbf{C O}_{\mathbf{3}}=\mathbf{N} \times \mathbf{5 3}=\mathbf{X}$
\therefore Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in the given 250 cc solution $=\frac{\mathbf{x}}{4}=\ldots \mathbf{g}=\mathbf{a}$

Determination of amount of NaOH

\therefore Volume of HCl required for complete neutralization of $\mathrm{NaOH}=$ total volume of $\mathrm{HCl}-$ volume of HCl required for neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{V}_{2}-2\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=\ldots$ cc

$$
\begin{gathered}
\text { Equation used } \mathrm{N}_{\mathbf{1}}=\frac{\mathbf{N}_{2} \mathbf{V}_{2}}{\mathbf{V}_{\mathbf{1}}} \\
\mathrm{N}_{\mathrm{NaOH}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times \mathbf{V}_{\mathrm{HCl}}}{\mathbf{V}_{\mathrm{NaOH}}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times \mathrm{V}_{2}-2\left(\mathrm{~V}_{2}-\mathbf{V}_{1}\right)}{\mathbf{V}_{\mathrm{NaOH}}}=. . \mathbf{N}
\end{gathered}
$$

\therefore Grams per litre of $\mathrm{NaOH}=\mathrm{N}_{\mathbf{N a O H}} \times$ equivalent mass of $\mathrm{NaOH}=\mathbf{N} \times \mathbf{4 0}=\mathbf{Y}$
\therefore Amount of NaOH present in the given 250 cc solution $=\frac{\mathrm{Y}}{4}=. . \mathrm{g}=\mathrm{b}$
Percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\mathbf{a}}{\mathbf{a}+\mathbf{b}} \times 100=\cdots \%$
Percentage of $\mathrm{NaOH}=\frac{\mathbf{b}}{\mathbf{a}+\mathbf{b}} \times 100=\cdots \%$

Result:

1.	Normality of sodium carbonate solution	$\ldots \ldots \ldots \ldots \mathrm{N}$
2.	Normality of hydrochloric acid solution	$\ldots \ldots \mathrm{N}$
3.	Amount of NaOH present in 250 cc of the mixture	$\ldots \ldots \mathrm{g}$
4.	Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in 250 cc of the mixture	$\ldots \ldots \mathrm{g}$
5.	Percentage (\%) of NaOH^{2} in the mixture	$\ldots \%$
6.	Percentage (\%) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture	$\ldots \ldots \%$

Note: $\mathrm{NaOH} \& \mathrm{Na}_{2} \mathrm{CO}_{3}$ solutions are prepared separately and added separately using two burettes in to the same volumetric flask to distribute to students.

5. DETERMINATION OF SODIUM CARBONATE AND SODIUM BICARBONATE FROM THEIR MIXTURE

Aim: To prepare the standard sodium carbonate solution, standardize hydrochloric acid solution and to determine sodium carbonate and sodium bicarbonate from their mixture of the solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Sodium carbonate, hydrochloric acid, sodium bicarbonate, phenolphthalein and methyl orange etc.

Theory: Sodium carbonate $($ Mol.wt $=106)$ is referred as the primary standard in the titrimetric analysis with the gram equivalent mass (E) of 53 and its aqueous solution is weakly basic in nature. The amount of sodium carbonate to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of sodium carbonate is used to standardize the secondary standard solutions like hydrochloric acid.
The given hydrochloric acid solution is standardized by titrating against the standard solution of sodium carbonate using phenolphthalein as an indicator till the colour changes from pink to colourless.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
$$

The sodium carbonate and sodium bicarbonate present in the given solution is determined by titrating against the standard solution of hydrochloric acid by the selective use of indicators. The sodium carbonate alone present in the given mixture reacts first with HCl to form NaHCO_{3}. The phenolphthalein is added as an indicator to know the end point of the titration which turns its colour from pink to colourless. As the NaHCO_{3} is slightly acidic in nature, phenolphthalein is not a suitable indicator at this stage. The sodium bicarbonate formed from sodium carbonate and sodium bicarbonate present in the given mixture neutralises with next addition of HCl to form NaCl . During this stage of titration, methyl orange is selected as suitable indicator, to know the end point of titration which turns its colour from yellow to red.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{NaHCO}_{3} \\
& \mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
\end{aligned}
$$

Procedure

A. Preparation of standard ($0.1 \mathbf{N}$) Sodium carbonate solution:

Accurately weighed $(1.325 \mathrm{~g})$ sodium carbonate is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of hydrochloric acid solution:

The burette is washed with water, rinsed with the given hydrochloric acid solution and filled with the same solution up to the zero mark (Avoid air bubbles). The pipette is washed with distilled water and rinsed with sodium carbonate solution. The given conical flask is washed with distilled water.

Exactly 25 cc of sodium carbonate solution is pipetted out into the clean conical flask. Two drops of phenolphthalein indicator is added and the solution is titrated against sodium carbonate solution till the colour changes from pink to colourless. The burette reading is noted. The titration is repeated to get concordant values and these are used to calculate exact strength or normality of hydrochloric acid solution.

C. Determination of sodium carbonate and sodium bicarbonate from their mixture:

The mixture of sodium carbonate and sodium bicarbonate solution supplied in the 250 cc volumetric flask is diluted up to the mark using distilled water or ready mixture of the solution may be directly supplied. 25 cc of this solution is pipetted out into a clean conical flask and 2 to 3 drops of phenolphthalein indicator is added and titrated against the standard hydrochloric acid solution till the colour changes from pink to colourless. The burette reading is noted as V_{1}. The titration is further continued by adding 2-3 drops of methyl orange indicator till the colour changes from yellow to red. The burette reading is noted as V_{2}. The above procedure repeated to get concordant values.

Using the appropriate formula amounts sodium carbonate and sodium bicarbonate in the given mixture is determined.

Observations and Calculation

A. Preparation of $\mathbf{2 5 0}$ cc of standard ($\mathbf{0 . 1} \mathrm{N}$) sodium carbonate solution

The amount of sodium carbonate required $\quad=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.1 \times 53 \times 250}{1000}=1.325 \mathrm{~g}$
Mass of empty watch glass
: $\mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of watch glass + sodium carbonate
: $\mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of sodium carbonate

$$
:\left(m_{2}-m_{1}\right)=--------g
$$

If the value of mass of sodium carbonate weighed differs from 1.325 g then, normality of sodium carbonate solution is calculated by
\therefore Normality of sodium carbonate solution $=\frac{\text { Mass of sod. carbonate } \times 4}{\text { Eq.mass of sod.carbonate }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{53}=\ldots \ldots . \mathrm{N}
$$

B. Standardisation of hydrochloric acid:

Solution taken in the burette
Solution pipetted out in conical flask
Indicator used
Colour change at the end point
: HCl solution
: Sodium carbonate
: Methyl orange
: Yellow to orange red

Tabulations

Trial No	Burette readings (cc)		Volume of HCl added (cc) (B-A)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
\mathrm{N}_{1}=\text { Normality of } \mathrm{HCl} & \mathrm{~V}_{1}=\text { Volume of } \mathrm{HCl}(\mathrm{CBR}) \\
\mathrm{N}_{2}=\text { Normality of sodium carbonate and } & \mathrm{V}_{2}=\text { Volume of sodium carbonate }
\end{array}
$$

Therefore, Normality of $\mathrm{HCl}, \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

C. Determination of sodium carbonate and sodium bicarbonate from their mixture:

Solution taken in the burette
Solution pipetted out in conical flask Indicator used

Colour change at the end point
: HCl solution
: Mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} solution
: Phenolphthalein for first stage \& methyl orange for second stage
: For first stage Pink to colourless for second stage yellow to red

Tabulations I stage (with Phenolphthalein) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$

Trial No	Burette readings (cc)		Volume of HCl added (B $-A)$ $(c c)$	Concordant burette reading in cc $(C B R)$
	Initial reading (A)	Final reading (B)		$\mathrm{CBR}=\mathrm{V}_{1} \mathrm{cc}$
1	0.0			
2	0.0			
3	0.0			

II stage (with Methyl red) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{NaHCO}_{3}$

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow
$$

Trial No	Burette readings (cc)		$\begin{gathered} \text { Volume of } \mathrm{HCl} \\ \text { added }(\mathrm{B}-\mathrm{A})(\mathrm{cc}) \end{gathered}$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	Final Level of I stage			$\mathrm{CBR}=\mathrm{V}_{2} \mathrm{cc}$
2	,			
3	,			

Concordant burette reading for $\mathrm{V}_{1}=\ldots \mathrm{cc}$ \& for $\mathrm{V}_{2}=\ldots \mathrm{cc}$

Calculations

Determination of amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
\mathbf{V}_{1} : Volume of HCl used for half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathbf{V}_{\mathbf{2}}$:Volume of excess of HCl used for remaining half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and complete neutralization of NaHCO_{3}.
\therefore Volume of HCl required for half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{V}_{1}=\ldots$ c.c.
\therefore Volume of HCl required for complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times \mathrm{V}_{1}=$...c.c.
Concentration or strength of sodium carbonate
$\mathrm{N}_{\mathbf{1}}=\frac{\mathbf{N}_{2} \mathbf{V}_{2}}{\mathbf{V}_{1}}=\mathrm{N}_{\text {Sod carbonate }}=\frac{\mathbf{N}_{\mathrm{HCL}} \times \mathbf{V}_{\mathrm{HCl}}}{\mathbf{V}_{\text {Sod.carbonate }}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times 2 \mathbf{V}_{1}}{\mathbf{V}_{\text {Sod.carbonate }}} \ldots=\mathbf{N}$.
We know that, equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=53$
\therefore Grams per litre of sodium carbonate

$$
=N_{\text {Sod carbonate }} \times \text { equivalent mass of Sod carbonate }=N \times 53=\mathbf{X}
$$

\therefore Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in the given 250 cc solution $=\frac{\mathbf{x}}{4}=\cdots \mathbf{g}=\mathbf{a}$

Determination of amount of NaHCO_{3}

\therefore Volume of HCl required for complete neutralization of NaHCO_{3} $=$ total volume of $\mathrm{HCl}-$ volume of HCl required for neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=V_{2}-2 \times V_{1}=\ldots \text { c.c. }
$$

Concentration or strength of sodium bicarbonate
$\mathrm{N}_{1}=\frac{\mathbf{N}_{2} \mathrm{~V}_{2}}{\mathbf{V}_{1}}=\mathrm{N}_{\mathrm{NaHCO}_{3}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times \mathrm{V}_{\mathrm{HCl}}}{\mathbf{V}_{\mathrm{NaHCO}_{3}}}=\frac{\mathbf{N}_{\mathrm{HCl}} \times \mathrm{V}_{\mathbf{2}}-2 \mathbf{V}_{\mathbf{1}}}{\mathbf{V}_{\mathrm{NaHCO}_{3}}} \ldots=\mathbf{N}$
We know that, equivalent mass of $\mathrm{NaHCO}_{3}=84$
\therefore Grams per litre of $\mathrm{NaHCO}_{3}=\mathrm{N}_{\mathrm{NaHCO}_{3}} \times$ equivalent mass of $\mathrm{NaHCO}_{3}=\mathbf{N} \times \mathbf{8 4}=\mathbf{Y}$
\therefore Amount of NaHCO_{3} present in the given 250 cc solution $=\frac{\mathbf{Y}}{4}=\cdots \mathbf{g}=\mathbf{b}$
Percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\mathbf{a}}{\mathbf{a}+\mathbf{b}} \times 100=\cdots \%:$ Percentage of $\mathrm{NaHCO}_{3}=\frac{\mathbf{b}}{\mathbf{a}+\mathbf{b}} \times 100=\cdots \%$

Result:

1.	Normality of sodium carbonate solution	$\ldots \ldots \mathrm{N}$
2.	Normality of hydrochloric acid solution	$\ldots \ldots . . \mathrm{N}$
3.	Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in 250 cc of the mixture	$\ldots \ldots . . \mathrm{g}$
4.	Amount of NaHCO_{3} present in 250 cc of the mixture	$\ldots \ldots . . \mathrm{g}$
5.	Percentage $(\%)$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture	$\ldots \ldots . \%$
6.	Percentage $(\%)$ of NaHCO_{3} in the mixture	$\ldots \ldots . \%$

Note: $\mathrm{Na}_{2} \mathrm{CO}_{3} \& \mathrm{NaHCO}_{3}$ solutions are prepared separately and added separately using two burettes in to the same volumetric flask distribute to students..

6. DETERMINATION OF OXALIC ACID AND SULPHURIC ACID FROM THEIR MIXTURE

Aim: To prepare the standard oxalic acid solution, standardize NaOH and KMnO_{4} solutions and to determine oxalic acid and sulphuric acid from their mixture of the solution
Apparatus : Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Sodium hydroxide, oxalic acid, potassium permanganate, phenolphthalein, Sulphuric acid.
Theory: Though Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right.$. Mol.wt $\left.=126\right)$ is not a primary standard (satisfactory secondary standard), but due to the stability, non-hygroscopic nature \& solubility. It is a dibasic acid with the gram equivalent mass (E) as 63 . The amount of oxalic acid crystals to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of oxalic acid is used to standardise the secondary standard solutions like sodium hydroxide, potassium permanganate etc.
The given sodium hydroxide solution is standardized by titrating against the standard solution of oxalic acid using phenolphthalein as an indicator till the colour changes from colourless to pale pink.
The titration of oxalic acid versus potassium permanganate is an example of redox titration in which oxalic acid gets oxidised to carbon dioxide and potassium permanganate gets reduced to manganese sulphate. This reaction is carried out in acidic medium by adding 2 N sulphuric acid and titrated against KMnO_{4} in hot condition $\left(60-70^{\circ} \mathrm{C}\right)$. In this titration KMnO_{4} acts as self indicator changes colour from colourless to pale pink near the end point.
The given mixture of the solution contains both oxalic acid and sulphuric acid. Oxalic acid present in the mixture can be estimated by titrating a known volume of the mixture against standard KMnO_{4} solution. The following reactions take place.

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
& {\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+[\mathrm{O}] \longrightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow\right] \times 5} \\
& 2 \mathrm{~K}_{\mathrm{MnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10} \mathrm{CO}_{2} \uparrow
\end{aligned}
$$

The total acid present in the mixture can be estimated by titrating a known volume of the mixture against standard NaOH solution using phenolphthalein indicator. The following reactions take place.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} & \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} & \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Procedure:

A. Preparation of standard (0.05 N) oxalic acid solution:

Accurately weighed $(0.7875 \mathrm{~g})$ oxalic acid is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of sodium hydroxide solution:

The burette is washed with water, rinsed with the given sodium hydroxide solution and filled with the same solution up to the zero mark (Avoid air bubbles). The pipette is washed with distilled water and rinsed with oxalic acid solution. The given conical flask is washed with distilled water.

Exactly 25 cc of oxalic acid solution is pipetted out into the clean conical flask. Two drops of phenolphthalein indicator is added and the solution is titrated against oxalic acid solution till the colour changes from colourless to pale pink. The burette reading is noted. The titration is repeated to get concordant values. Using these readings the exact normality of sodium hydroxide is calculated.

C. Standardization Potassium permanganate solution:

Exactly 25 cc of oxalic acid solution is pipetted out into a clean conical flask. $1 \frac{1}{2}$ test tube of dilute sulphuric acid $(2 \mathrm{~N})$ is added and heated nearly to boiling. It is then titrated against potassium permanganate solution taken in the burette. The end point is reached when permanent pale pink colour is obtained. The titration is repeated to get concordant values and the exact normality of Potassium permanganate solution is determined by using concordant reading.

D. Determination of oxalic acid from the mixture of oxalic acid and sulphuric acid solution.

The acid mixture supplied in the 250 cc standard flask is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution of the mixture of oxalic acid and sulphuric acid solution may be directly supplied. 25 cc of the acid mixture is pipetted out into a clean conical flask. $1 \frac{1}{2}$ test tube of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added and the solution is heated to $\left(60-70^{\circ} \mathrm{C}\right)$ just short of boiling. The hot solution is titrated against standard KMnO_{4} solution till permanent pink colour is obtained. The titration is repeated to get concordant values and the amount of oxalic acid in the given mixture is calculated.

E. Determination of sulphuric acid from the mixture of oxalic acid and sulphuric acid solution.

25 cc of the acid mixture is pipetted out into a clean conical flask and 2 drops of phenolphthalein indicator is added, the solution is titrated against standard NaOH solution till permanent pale pink colour is obtained. The titration is repeated to get concordant values. Using the appropriate formula amounts of oxalic acid and sulphuric acid in the given mixture is determined.

Observation and calculation:
A. preparation of 250 cc of standard $(\mathbf{0 . 0 5} \mathrm{N})$ oxalic acid solution

The amount of oxalic acid required $=\frac{\mathrm{NEV}}{1000}$

$$
=\frac{0.05 \times 63 \times 250}{1000}=0.7875 \mathrm{~g}
$$

Mass of empty watch glass
$\mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$

Mass of watch glass + oxalic acid
: $\mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of oxalic acid
$:\left(m_{2}-m_{1}\right)=--------g$
If the value of mass of oxalic acid weighed differs from 0.7875 g then, normality of oxalic acid solution is calculated by

Therefore Normality of oxalic acid solution

$$
\begin{aligned}
& =\frac{\text { Mass of oxalic acid } x 4}{\text { Eq.mass of oxalic acid }} \\
& =\frac{\left(m_{2}-m_{1}\right) \times 4}{63}=\ldots \ldots . \mathrm{N}
\end{aligned}
$$

B. Standardization of Sodium hydroxide:

Solution taken in the burette
: NaOH solution
Solution pipetted out in a conical flask
: 25 cc Oxalic acid
Indicator used
: Phenolphthalein
Colour change at the end point
: Colourless to pale pink
Tabulations

Trial No	Burette readings (cc)		Volume of NaOH added (cc) (B $-A)$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
2	0.0			
3	0.0			

Calculations: \quad Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{NaOH} \quad \mathrm{V}_{1}=$ volume of $\mathrm{NaOH}(\mathrm{CBR})$
$\mathrm{N}_{2}=$ Normality of oxalic acid and $\quad \mathrm{V}_{2}=$ volume of oxalic acid (25)

$$
\text { Therefore, Normality of } \mathrm{NaOH}, \mathrm{~N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\ldots \ldots
$$ N

C. Standardization of Potassium permanganate solution:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: KMnO_{4} solution
: 25 cc oxalic acid+ $1^{1} / 2$ test tube 2 N sulphuric acid
: KMnO_{4} solution itself
: Colourless to pale pink

Tabulations

Trial No	Burette readings (cc)		Volume of KMnO_{4} added (cc) (B - A)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{KMnO}_{4} \quad \mathrm{~V}_{1}=$ Volume of $\mathrm{KMnO}_{4}(\mathrm{CBR})$
$\mathrm{N}_{2}=$ Normality of oxalic acid and $\quad \mathrm{V}_{2}=$ Volume of oxalic acid(25)
Therefore, Normality of $\mathrm{KMnO}_{4}, \mathrm{~N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{v}_{1}}=\ldots \ldots \ldots . . \mathrm{N}$
D. Determination of oxalic acid from the mixture of oxalic acid and sulphuric acid
solution:

Solution taken in the burette $: \mathrm{KMnO}_{4}$ solution
Solution taken in the conical flask $: 25 \mathrm{cc}$ of mixture of oxalic acid and sulphuric acid solution $++1 \frac{1}{2}$ test tube 2 N sulphuric acid and heated to $70-80^{\circ} \mathrm{C}$.
: KMnO_{4} solution itself
: Colourless to pale pink

Tabulations

Trial No	Burette readings (cc)		Volum of KMnO_{4} added (cc) (B - A)	
	Concordant burette reading in ceading (B)			
1	0.0			
2	0.0			
3	0.0			

Calculations:

Determination of oxalic acid from the mixture of oxalic acid and sulphuric acid solution
Let ' \mathbf{a} ' be the normality of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and ' \mathbf{b} ' the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$
\therefore Total normality of the mixture $=(\mathrm{a}+\mathrm{b})$
Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of oxalic acid from the mixture of oxalic acid and sulphuric acid solution= $(\mathrm{a}+\mathrm{b})$
$\mathrm{V}_{1}=$ volume of oxalic acid from the mixture of oxalic acid and sulphuric acid solution $=25 \mathrm{cc}$
$\mathrm{N}_{2}=$ Normality of KMnO_{4} and $\mathrm{V}_{2}=$ Volume of KMnO_{4}
Normality of oxalic acid from the mixture of oxalic acid and sulphuric acid solution:

$$
\begin{aligned}
\mathrm{N}_{1} & =\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\mathrm{N}_{1}=\frac{\mathrm{N}_{2} \times \mathrm{CBR}}{25}= \\
& =-----\mathrm{N}=\mathrm{a}
\end{aligned}
$$

We know that, equivalent mass of oxalic acid $=63.0$
Amount of oxalic acid from the mixture of oxalic acid and sulphuric acid solution present in dm^{3} of solution $(X)=$ Normality of oxalic acid x Eq.mass of oxalic acid (63) $=$ \qquad g
Amount of oxalic acid from the mixture of oxalic acid and sulphuric acid solution present in 250 cc of solution $=\frac{x}{4}=$. \qquad $g=$ ' R '

E. Determination of sulphuric acid from the mixture of the solution.

Solution taken in the burette
Solution taken in conical flask
Indicator used
Colour change at the end point
: NaOH solution
: 25 cc of mixture of oxalic acid and sulphuric acid.
: Phenolphthalein
: Colourless to pale pink

Tabulations

Trial No	Burette readings (cc)		Volume of NaOH	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)	(cc) $(\mathrm{B}-\mathrm{A})$	 1$\quad 0.0$
2	0.0			
3	0.0			

Calculations :

Determination of sulphuric acid from the mixture of the solution

Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ total Normality of mixture of oxalic acid and sulphuric acid
$\mathrm{V}_{1}=$ Volume of mixture of oxalic acid and sulphuric acid (CBR),
$\mathrm{N}_{2}=$ Normality of NaOH and $\mathrm{V}_{2}=$ Volume of NaOH
Total Normality of mixture of oxalic acid and sulphuric acid, $\quad \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\ldots . . \mathrm{N}=(\boldsymbol{a}+\boldsymbol{b})$
Total Normality of sulphuric acid from the mixture of oxalic acid and sulphuric acid $=(\mathbf{a}+\mathbf{b})$
\therefore Normality of sulphuric acid $\quad=\mathrm{b}=(\mathbf{a}+\mathbf{b}) \mathbf{- a}$
We know that, equivalent mass of Sulphuric acid $=49.0$
Amount of sulphuric acid from the mixture of oxalic acid and sulphuric acid solution present in dm^{3} of solution $(Y)=(\mathbf{a}+\mathbf{b})-\mathbf{a} \quad$ x Eq. Mass of sulphuric $\operatorname{acid}(49)=$. \qquad g

Amount of sulphuric acid from the mixture of oxalic acid and sulphuric acid solution present in 250 cc of solution $\quad=\frac{\mathrm{Y}}{4}=\ldots . . \mathrm{g}=' \mathrm{~S}$ '

Percentage of Oxalic acid $=\frac{\mathrm{R}}{\mathrm{R}+\mathrm{S}} \times 100=\ldots \%$
Percentage of Sulphuric acid $=\frac{\mathrm{s}}{\mathrm{R}+\mathrm{S}} \times 100=\ldots \% \quad:$ Result:

1.	Normality of oxalic acid solution	$\ldots \ldots . \mathrm{N}$
2.	Normality of sodium hydroxide solution	$\ldots \ldots . \mathrm{N}$
3.	Normality of potassium permanganate solution	$\ldots . . \mathrm{N}$
4.	Amount of oxalic acid from the mixture of oxalic acid and sulphuric acid solution	$\ldots . . \mathrm{g}$
5.	Amount of sulphuric acid from the mixture of oxalic acid and sulphuric acid solution	$\ldots . . \mathrm{g}$
6.	Percentage of Oxalic acid	$\ldots \%$
7.	Percentage of Sulphuric acid	$\%$

7. DETERMINATION OF MOHR'S SALT

Aim: To prepare the standard solution of oxalic acid, standardize potassium permanganate solution and to determine Mohr's salt (Ferrous Ammonium Sulphate, $\left.\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .6 \mathrm{H}_{2} \mathrm{O}\right)$ solution.

Apparatus : Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals : Oxalic acid, potassium permanganate, Mohr's salt and sulphuric acid.
Theory : Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$. Mol.wt $\left.=126\right)$ is referred as satisfactory secondary standard because of its stability, non-hygroscopic nature \& solubility in the titrimetric analysis. It is a dibasic acid with the gram equivalent mass (E) as 63 . The amount of oxalic acid crystals to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of oxalic acid is used to standardise the secondary standard solutions like sodium hydroxide, potassium permanganate etc.

Potassium permanganate and oxalic acid are oxidizing and reducing agents respectively. The titration of oxalic acid versus KMnO_{4} is an example of redox titration in which oxalic acid gets oxidised to carbon dioxide and KMnO_{4} gets reduced to manganese sulphate. This reaction is carried out in acidic medium by adding 2 N sulphuric acid and titrated against KMnO_{4} in hot condition ($60-80^{\circ} \mathrm{C}$). In this titration KMnO_{4} acts as self indicator which changes colourless to light pink at the end point.

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
{\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+[\mathrm{O}] \longrightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow\right] \times 5} \\
2 \mathrm{KnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \\
\mathrm{CO}_{2} \uparrow
\end{gathered}
$$

Mohr's salt (FAS) is a reducing agent. To determine the amount of Mohr's salt ($\left.\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ present in the given solution, the solution is diluted to 250 cc in the standard flask and a known volume of this solution is titrated against KMnO_{4} solution. KMnO_{4} solution oxidizes ferrous sulphate to ferric sulphate.

$$
\begin{aligned}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
{\left[2 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+[\mathrm{O}] \longrightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}\right] \times 5 } \\
2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{FeSO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Procedure:

A. Preparation of standard (0.05 N) oxalic acid solution:

Accurately weighed $(0.7875 \mathrm{~g})$ oxalic acid is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.
B. Standardization Potassium permanganate solution: Exactly 25 cc of oxalic acid solution is pipetted out into a clean conical flask. $1 \frac{1}{2}$ test tube of dilute sulphuric acid (2 N) is added and heated nearly to boiling. It is then titrated against potassium permanganate solution taken in the burette. The end point is reached when permanent pale pink colour is obtained. The titration is repeated to get concordant values and is used to calculate exact normality of potassium permanganate.
C. Determination of Mohr's salt: The Mohr's salt solution supplied in the standard flask is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution of Mohr's salt may be directly supplied. Exactly 25 cc of this solution is pipetted out into a clean conical flask. $1 \frac{1}{2}$ test tube of dilute sulphuric acid is added and the solution is titrated against potassium permanganate solution taken in the burette. The end point is reached when permanent pale pink colour is obtained. The titration is repeated to get concordant values.

Using the appropriate formula, amount Mohr's salt present in the given solution is determined.

Observations and Calculation

A. Preparation of 250 cc of standard ($\mathbf{(0 . 0 5 N}$) oxalic acid solution

The amount of oxalic acid required $=\mathrm{w}=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.05 \times 63 \times 250}{1000}=0.7875 \mathrm{~g}$
Mass of empty watch glass : $\mathrm{m}_{1}=\ldots \ldots \mathrm{g}$
Mass of watch glass + oxalic acid
Mass of oxalic acid

$$
: \mathrm{m}_{2}=. \mathrm{g}
$$

If the value of mass of oxalic acid weighed differs from 0.7875 g then, normality of oxalic acid solution is calculated by
\therefore Normality of oxalic acid solution $\quad=\frac{\text { Mass of oxalic acid } \times 4}{\text { Eq.mass of oxalic acid }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{63}=\ldots \ldots \ldots \ldots \ldots \mathrm{N}
$$

B. Standardization of potassium permanganate solution:

Solution taken in the burette
: KMnO_{4} solution
Solution taken in the conical flask
Indicator used
Colour change at the end point
: 25 cc oxalic acid $+1^{1} / 2$ test tube of $2 \mathrm{~N}_{2} \mathrm{SO}_{4}$
: KMnO_{4} solution itself
: Colourless to pale pink

Trial No	Burette readings (cc)		Volume of KMnO_{4} added (cc) (B - A)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of $\mathrm{KMnO}_{4} \quad \mathrm{~V}_{1}=$ volume of $\mathrm{KMnO}_{4}(\mathrm{CBR})$
$\mathrm{N}_{2}=$ Normality of oxalic acid and $\mathrm{V}_{2}=$ volume of oxalic acid
Therefore, Normality of $\mathrm{KMnO}_{4}, \mathrm{~N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

C. Determination of Mohr's salt:

Solution taken in the burette
Solution taken in the conical flask

Indicator used
Colour change at the end point
: KMnO_{4} solution
:25cc Mohr's salt solution $+1 \frac{1}{2}$ test tube of $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$
: KMnO_{4} solution itself
: Colourless to pale pink

Tabulations

Trial	Burette readings (cc)		Volume of	Concordant burette No
reading in cc (CBR)				
1	Initial reading (A)	Final reading (B)	KMnO_{4} added $(\mathrm{cc})(\mathrm{B}-\mathrm{A})$	 2$\quad 0.0$
0.0				
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of Mohr's salt $\quad \mathrm{V}_{1}=$ Volume of Mohr's salt
$\mathrm{N}_{2}=$ Normality of KMnO_{4} and $\mathrm{V}_{2}=$ Volume of KMnO_{4}
Therefore, Normality of Mohr's salt solution, $N_{1}=\frac{N_{2} V_{2}}{V_{1}}=$ \qquad N

We know that, equivalent mass of Mohr's salt $\left[\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .6 \mathrm{H}_{2} \mathrm{O}\right]=392.1$
Amount of Mohr's salt present in dm^{3} of solution (X)
$=$ Normality of Mohr's salt x Eq.mass of Mohr's salt(392.1)
$=. \mathrm{g}$
Amount of Mohr's salt present in 250 cc of solution $=\frac{\mathrm{X}}{4}=\ldots \ldots \ldots . . \mathrm{g}$

Result:

1.	Normality of oxalic acid solution	$\ldots \ldots \mathrm{N}$
2.	Normality of KMnO_{4} solution	$\ldots \ldots \ldots \ldots . . . \mathrm{N}$
3.	Normality of Mohr's salt solution	$\ldots \mathrm{N}$
4.	Amount of Mohr's salt present in 250 cc of solution	$\ldots \ldots \mathrm{g}$

8. DETERMINATION OF Fe ${ }^{2+}$ ION

Aim: To prepare the standard Mohr salt solution, standardize potassium dichromate solution and to determine Fe^{2+} ion in the given solution.

Apparatus : Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Mohr's salt,potassium dichromate, sulphuric acid, diphenyl amine indicator etc.
Theory: Mohr's salt or Ferrous ammonium sulphate-FAS [$\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4 .} 6 \mathrm{H}_{2} \mathrm{O}$, Mol. $\mathrm{wt}=392.1$] is a reducing agent. Its molecular mass is equal to its gram equivalent mass (E) as 392.1. The amount of Mohr's salt to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of Mohr's salt is used in this experiment to standardize potassium dichromate solution.

The titration of Mohr's salt v/s potassium dichromate is an example of redox titration in which Fe^{2+} ions of the Mohr's salt gets oxidised to Fe^{3+} ions and potassium dichromate gets reduced to chromic sulphate. This reaction is carried out in acidic medium by adding 1 test tube sulphuric acid - phosphoric acid mixture and diphenylamine indicator. The added phosphoric acid lowers the oxidation potential of ferric-ferrous ion system by forming a complex $\left[\mathrm{Fe}\left(\mathrm{HPO}_{4}\right)\right]^{+}$with ferric ions this gives the sharp colour change of the indicator at the end point.

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}] \\
{\left[2 \mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+[\mathrm{O}] \longrightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}\right] \times 3} \\
\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+7 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Procedure:

A. Preparation of standard ($\mathbf{0 . 0 5 N}$) Mohr's salt solution:

Accurately weighed $(4.901 \mathrm{~g})$ Mohr's salt is transferred to a beaker and is made in to paste with 5 cc of conc. sulphuric acid and further it is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of potassium dichromate solution:

Exactly 25 cc of Mohr's salt solution is pipetted out into a clean conical flask. 1 test tube of sulphuric acid-phosphoric acid mixture and 7-8 drops of diphenylamine indicator are added and immediately titrated against the potassium dichromate solution till the colour changes from pale green to deep violet.

The titration is repeated to get concordant values. Exact normality of potassium dichromate is calculated by using concordant readings.

C. Determination of $\mathbf{F e}^{\mathbf{2 +}}$ ions present in the given solution:

The Fe^{2+} ions present in the given solution is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution containing Fe^{2+} ions may be directly supplied. Exactly 25 cc of this solution is pipetted out into a clean conical flask. 1 test tube of sulphuric acidphosphoric acid mixture is added and the solution is titrated against potassium dichromate solution using diphenyl amine as an indicator till the colour changes from pale green to deep violet. The titration is repeated to get concordant values. Using appropriate formula the amount of Fe^{2+} ions present in the given solution is determined.

Observations and Calculation

A. Preparation of 250 cc of standard ($\mathbf{0 . 0 5 N}$) Mohr's salt solution

The amount of Mohr's salt required $=\mathrm{w}=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{3 9 2 . 1} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=4.901 \mathbf{g}$
Mass of empty watch glass : $\mathrm{m}_{1}=\ldots \ldots \mathrm{g}$
Mass of watch glass + Mohr's salt $: \mathrm{m}_{2}=\ldots \ldots \ldots . . \mathrm{g}$
Mass of Mohr's salt $:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=\ldots \ldots \mathrm{g}$
If the value of mass of Mohr's salt weighed differs from 4.901 g then, normality of Mohr's salt solution is calculated by
\therefore Normality of Mohr's salt solution $=\frac{\text { Mass of Mohrs salt } \times 4}{\text { Eq.mass of Mohrs salt }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{392.1}=\ldots \ldots . \mathrm{N}
$$

B. Standardisation of potassium dichromate solution:

Solution taken in the burette
Solution taken in the conical flask

Indicator used
Colour change at the end point
: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
: 25 cc containing Fe^{2+} ions +1 test tube of
$\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4}$ mixture
: Diphenyl amine
: Pale green to deep violet

Tabulations

Trial No	Burette readings (cc)		$\begin{gathered} \text { Volume of } \\ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \text { added }(\mathrm{cc}) \\ (\mathrm{B}-\mathrm{A}) \end{gathered}$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
\mathrm{N}_{1}=\text { Normality of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & \mathrm{~V}_{1}=\text { Volume of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{CBR}) \\
\mathrm{N}_{2}=\text { Normality of Mohr's salt and } & \mathrm{V}_{2}=\text { Volume of Mohr's salt }
\end{array}
$$

Therefore, Normality of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~N}_{\mathbf{1}}=\frac{\mathbf{N}_{2} \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}}}=\ldots \ldots . . .$. N

C. Determination of $\mathrm{Fe}^{\mathbf{2 +}}$ ions present in the given solution:

Solution taken in the burette $: \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
Solution taken in the conical flask :25cc Mohr'ssalt+1 test tube of $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4}$ mixture

Indicator used
: Diphenyl amine
Colour change at the end point
: Pale green to deep violet

Tabulations

Trial No	Burette readings (cc)		Volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ added (cc) ($\mathrm{B}-\mathrm{A}$)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations

: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of Fe^{2+} ions, $\quad \mathrm{V}_{1}=$ Volume of Fe^{2+} ions,
$\mathrm{N}_{2}=$ Normality of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\quad \mathrm{V}_{2}=$ Volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Therefore, Normality of Fe^{2+} ions, $\mathrm{N}_{\mathbf{1}}=\frac{\mathbf{N}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{1}}}=$ \qquad N

We know that, equivalent mass of Fe^{2+} ions $=55.85$
Amount of Fe^{2+} ions present in dm^{3} of solution (X)

$$
\begin{aligned}
& =\text { Normality of } \mathrm{Fe}^{2+} \text { ions } x \text { Eq.mass of } \mathrm{Fe}^{2+} \text { ions(55.85) } \\
& =\ldots \mathrm{g}
\end{aligned}
$$

Amount of Fe^{2+} ions present in 250 cc of solution $=\frac{\mathrm{x}}{4}$

$$
=. g
$$

Result:

1.	Normality of Mohr's salt solution	$\ldots \ldots \mathrm{N}$
2.	Normality of potassium dichromate solution	$\ldots \mathrm{N}$
3.	Normality of Fe^{2+} ions solution	$\ldots \mathrm{N}$
4.	Amount of Fe^{2+} ions present in 250 cc of solution	$\ldots \ldots \mathrm{g}$

9. DETERMINATION OF FERROUS AND FERRIC IONS IN A GIVEN MIXTURE

Aim: To determine the ferrous and ferric ions in a given mixture of the solution using standard potassium dichromate solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Potassium dichromate, hydrochloric acid, stannous chloride, mercuric chloride, diphenyl amine indicator etc.

Theory: Potassium dichromate (Mol.wt $=294.18$) is referred as the primary standard and strong oxidising agent in acidic medium in the titrimetric analysis. its equivalent mass (E) i.e Eqt.wt $=$ Mol.wt/6=49.03. The amount of potassium dichromate solution to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The ferrous iron in the solution is determined by titrating a known volume of the solution against standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution in presence of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ using diphenyl amine indicator.

$$
\begin{aligned}
& \mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4} \\
& 2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow+\mathrm{SnCl}_{4} \\
& \text { white silky ppt. }
\end{aligned} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}] \quad \begin{aligned}
& {\left[2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+[\mathrm{O}] \longrightarrow 2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}\right] \times 3} \\
& \hline \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeCl}_{2}+6 \mathrm{HCl}+\mathrm{Fe}^{2+}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{FeCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

To determine the ferric iron, it is first reduced to the ferrous state by using stannous chloride in presence of hydrochloric acid in hot condition. The excess of stannous chloride is removed by adding mercuric chloride. The total iron $\left(\mathrm{Fe}^{+2} \& \mathrm{Fe}^{+3}\right)$ in the solution is determined by titrating against the standard solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium by using sulphuric acid(2N), phosphoric acid and diphenyl amine indicator till the colour changes from pale green to violet. [The SnCl_{2} is added in drop wise to convert all ferric ions in to ferrous ions. The excess SnCl_{2} added is removed by adding HgCl_{2} in one lot thereby a silky white precipitate of mercurous chloride is obtained. If no silky white precipitate is obtained it indicates the insufficient addition of SnCl_{2}. If black precipitate is obtained it indicates the conversion of HgCl_{2} to Hg , which interferes in further reaction. Hence, in the above two cases, the solution should be rejected].

Procedure:

A. Preparation of standard $(\mathbf{0 . 0 5} \mathrm{N})$ potassium dichromate solution:

Accurately weighed $(0.613 \mathrm{~g})$ potassium dichromate is transferred to a beaker and dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Determination of $\mathbf{F e}^{\mathbf{2 +}}$ ions present in the given solution:

The ferrous and ferric ion present in the given solution is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution containing the ferrous and ferric ion may be directly supplied. Exactly 25 cc of this solution is pipetted out into a clean conical flask. $1 \frac{1}{2}$ test tube of dilute sulphuric acid $(2 \mathrm{~N})$ and $1 / 2$ test tube of phosphoric acid is added and the solution is titrated against potassium dichromate solution using diphenyl amine as an indicator till the colour changes from pale green to deep violet. The titration is repeated to get concordant values and calculated the amount of Fe^{2+} ions present in the given solution.

C. Determination of total iron (Fe^{2+} and Fe^{3+} ions) present in the given solution:

Exactly 25 cc of the ferrous and ferric ion solution is pipetted out into a clean conical flask. 5 cc of conc. HCl is added and the solution is heated to boiling so that the solution turns to yellow colour. Then SnCl_{2} is added in drop wise from a burette with shaking till the solution becomes colourless. Two more drops of SnCl_{2} are added to make sure that the reduction is complete. The solution is cooled under tap water to room temperature. Half test tube of mercuric chloride solution is added in one lot to get a silky white precipitate (If no silky white precipitate obtained or a black precipitate appears, then the solution should be rejected). $1 \frac{1}{2}$ test tube of sulphuric acid (2 N), $1 / 2$ test of phosphoric acid and 5-7 drops of diphenyl amine indicator are added, and the solution is titrated against standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution till the colour changes from pale green to dark violet. The titration is repeated to get concordant values. Using appropriate formula the amount of Fe^{2+} and Fe^{3+} ions in the given solution is determined.

Observations and Calculation

A. Preparation of $\mathbf{2 5 0} \mathbf{c c}$ of standard ($\mathbf{0 . 0 5} \mathrm{N}$) potassium dichromate solution

The amount of potassium dichromate required $=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{4 9} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=0.613 \mathbf{g}$
Mass of empty watch glass
$: \mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of watch glass + potassium dichromate $: \mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of potassium dichromate $\quad:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=--------\mathrm{g}$
If the value of mass of potassium dichromate weighed differs from 0.613 g then, normality of potassium dichromate solution is calculated by
\therefore Normality of potassium dichromate solution $=\frac{\text { Mass of potassium dichromate } \times 4}{\text { Eq.mass of potassium dichromate }}$

$$
=\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \times 4}{49.03}=\ldots \ldots . \mathrm{N}
$$

B. Determination of $\mathbf{F e}^{\mathbf{2 +}}$ ions present in the given solution:

Solution taken in the burette
: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution

Solution taken in the conical flask : 25 cc of ferrous and ferric ion $+1 \frac{1}{2}$ test tube of 2 N sulphuric acid $+1 / 2$ test tube of phosphoric acid

Indicator used
Colour change at the end point
: Diphenyl amine
: Pale green to deep violet

Tabulations

Trial No	Burette readings (cc)		VolumeofInitial reading (A)	Final reading (B)
	Concordant burette reading in cc (CBR)			
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{cc}
\mathrm{N}_{1}=\text { Normality of } \mathrm{Fe}^{2+} \text { ions } & \mathrm{V}_{1}=\text { Volume of } \mathrm{Fe}^{2+} \text { and } \mathrm{Fe}^{3+} \text { ion, } \\
\mathrm{N}_{2}=\text { Normality of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \text { and } & \mathrm{V}_{2}=\text { Volume of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\
\text { Therefore, Normality of } \mathrm{Fe}^{2+} \text { ions, } & \mathbf{N}_{\mathbf{1}}=\frac{\mathbf{N}_{2} \mathbf{v}_{2}}{\mathbf{v}_{\mathbf{1}}}=\ldots \ldots \ldots . \mathrm{N}
\end{array}
$$

We know that, equivalent mass of Fe^{2+} ions $=55.85$
Amount of Fe^{2+} ions present in dm^{3} of solution (X)
$=$ Normality of Fe^{2+} ions x Eq.mass(55.85) of Fe^{2+} ions $=$ \qquad
Amount of Fe^{2+} ions present in 250 cc of solution $=\frac{\mathrm{x}}{4}=$. \qquad $\mathrm{g}=\mathrm{'} \boldsymbol{a}$ '

C. Determination of total iron ($\mathrm{Fe}^{\mathbf{2 +}}$ and Fe^{3+} ions) present in the given solution:

Solution taken in the burette
: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
Solution taken in the conical flask
: 25 cc of ferrous and ferric ion $+\mathrm{SnCl}_{2}+\mathrm{HgCl}_{2}+$ $1 \frac{1}{2}$ test tube of 2 N sulphuric acid $+1 / 2$ test tube of phosphoric acid
Indicator used
: Diphenyl amine
Colour change at the end point : Pale green to deep violet
Tabulations

$\begin{aligned} & \text { Trial } \\ & \text { No } \end{aligned}$	Burette readings (cc)		Volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ added (cc) ($\mathrm{B}-\mathrm{A}$)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations :

Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
& \mathrm{N}_{1}=\text { Normality of total iorn }\left(\mathrm{Fe}^{2+} \text { and } \mathrm{Fe}^{3+} \text { ions }\right) \\
& \mathrm{V}_{1}=\text { Volume of total iorn }\left(\mathrm{Fe}^{2+} \text { and } \mathrm{Fe}^{3+} \text { ions }\right) \\
& \mathrm{N}_{2}=\text { Normality of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \text { and } \\
& \mathrm{V}_{2}=\text { Volume of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
\end{aligned}
$$

Normality of total iron (Fe^{2+} and Fe^{3+} ions), $\mathbf{N}_{\mathbf{1}}=\frac{\mathbf{N}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}}}=-\cdots---\mathrm{N}$
We know that, equivalent mass of Fe^{2+} ions $=55.85$
Amount of total iron (Fe^{2+} and Fe^{3+} ions) present in dm^{3} of solution (X)
$=$ Normality of total iron $\left(\mathrm{Fe}^{2+}\right.$ and Fe^{3+} ions) x Eq.mass of total iron (Fe^{2+} and Fe^{3+} ions)
$=. \mathrm{g}$
Amount of total iron $\left(\mathrm{Fe}^{2+}\right.$ and Fe^{3+} ions) present in 250 cc of solution $=\frac{\mathrm{x}}{4}=\ldots \mathrm{g}=\boldsymbol{b} \boldsymbol{b}$,
Amount of Fe^{3+} ions present in 250 cc of solution $=\mathbf{b}-\mathbf{a}=$ \qquad

Result:

1.	Normality of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}$ solution	$\ldots \ldots . . . \mathrm{N}$
2.	Amount of Fe^{2+} ions present in 250 cc of solution	$\ldots \ldots . . \mathrm{g}$
3.	Amount of total ions $\left(\mathrm{Fe}^{2+}\right.$ and Fe^{3+} ions) present in 250 cc of solution	$\ldots \ldots . . . \mathrm{g}$
4.	Amount of Fe^{3+} ions present in 250 cc of solution	$\ldots \mathrm{g}$

10. DETERMINATION OF IODINE

Aim: To prepare the standard potassium dichromate solution, standardize of sodium thiosulphate solution and to determine iodine in the given solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Sodium thiosulphate solution, potassium dichromate, sulphuric acid, potassium iodide solution, starch etc.

Theory: Potassium dichromate (Mol.wt $=294.18$) is referred as the primary standard and strong oxidising agent in presence of dilute sulphuric acid in the titrimetric analysis. Its molecular mass is six times as that of its equivalent mass (E) i.e Eq.wt $=$ Mol.wt/6=49.03. The amount of potassium dichromate solution to be weighed to prepare any volume (V) and any concentration (N) is calculated by using the equation NEV/1000. The standard solution of potassium dichromate is used in this experiment to standardize sodium thiosulphate solution.

The standardization of sodium thiosulphate is carried out by taking sodium thiosulphate in the burette and potassium dichromate, sulphuric acid and KI solution in the conical flask using starch as an indicator. The iodine liberated during the reaction between $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KI reacts with sodium thiosulphate to form sodium iodide and sodium tetrathionate. Hence, it is an example of redox reaction. This titration is called iodometric titration wherein oxidising agent i.e. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ liberates iodine from KI solution and the liberated iodine is titrated against $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is an indirect titration of iodine. There is another type of titration called iodimetric titration where in directly iodine solution is involved.

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+7 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{KI} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2} \\
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI} \\
\text { Hence, } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=3 \mathrm{I}_{2}=6 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}
\end{gathered}
$$

Procedure:

A. Preparation of standard ($\mathbf{0 . 0 5} \mathbf{N}$) potassium dichromate solution:

Accurately weighed $(0.613 \mathrm{~g})$ potassium dichromate is transferred to a beaker and dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization sodium thiosulphate solution:

Exactly 25 cc of potassium dichromate solution is pipetted out into a clean conical flask. To this 10 cc of dilute sulphuric acid (2 N) and 10 cc of KI solution are added. The liberated iodine formed during the reaction is titrated against the sodium thiosulphate solution till the colour changes to pale yellow. 1 cc of starch indicator is added so that the whole solution becomes blue colour. The titration is continued by
adding sodium thiosulphate solution in dropwise till the colour changes from blue to colourless[blue colour is not completely discharged because of the presence of $\left.\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]$. The titration is repeated to get concordant values and exact concentration or normality of sodium thiosulphate is calculated.

C. Determination of iodine ions present in the given solution:

The given iodine present in the volumetric flask is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution containing iodine may be directly supplied. Exactly 25 cc of this solution is pipetted out into a clean conical flask and titrated against the sodium thiosulphate solution till the colour changes to pale yellow. 1 cc of starch indicator is added so that the whole solution becomes blue colour. The titration is continued by adding sodium thiosulphate solution in dropwise till the colour changes from blue to colourless. The titration is repeated to get concordant values. Using appropriate formula the amount of iodine present in the given solution is determined.

Observations and Calculation

A. Preparation of 250 cc of standard (0.05 N) potassium dichromate solution

The amount of potassium dichromate required $=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{4 9} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=0.613 \mathbf{g}$
Mass of empty watch glass
$: \mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of watch glass + potassium dichromate $: \mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of potassium dichromate
$:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=$ \qquad
If the value of mass of potassium dichromate weighed differs from 0.613 g then, normality of potassium dichromate solution is calculated by
\therefore Normality of potassium dichromate solution $=\frac{\text { Mass of potassium dichromate } \times 4}{\text { Eq.mass of potassium dichromate }}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{49.03}=\ldots \ldots . \mathrm{N}
$$

B. Standardisation of sodium thiosulphate solution:

Solution taken in the burette
: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask
: $25 \mathrm{cc} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+10 \mathrm{cc}$ of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}+$
10 cc of 10% KI solution
Indicator used

Colour change at the end point
: Starch (To be added after getting pale yellow colour to the reaction mixture)
: Blue to colourless

Tabulations

Trial No	Burette readings (cc)		Volume of$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added (cc)$(\mathrm{B}-\mathrm{A})$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{lc}
\mathrm{N}_{1}=\text { Normality of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & \mathrm{~V}_{1}=\text { Volume of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{CBR}) \\
\mathrm{N}_{2}=\text { Normality of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \text { and } & \mathrm{V}_{2}=\text { Volume of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
\end{array}
$$

Therefore, Normality of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{~N}_{1}=\frac{\mathbf{N}_{2} \mathbf{V}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{1}}}=$ \qquad N

C. Determination of iodine present in the given solution:

Solution taken in the burette
: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask : 25 cc Iodine solution
Indicator used
Colour change at the end point
: Starch (To be added after getting pale yellow colour to the reaction mixture)
: Blue to colourless

Tabulations

Trial No	Burette readings (cc)		Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added $(\mathrm{cc})(\mathrm{B}-\mathrm{A})$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality iodine present in the given solution $\quad \mathrm{V}_{1}=$ Volume of iodine taken
$\mathrm{N}_{2}=$ Normality of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\quad \mathrm{V}_{2}=$ Volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Therefore, Normality of iodine, $\mathrm{N}_{\mathbf{1}}=\frac{\mathbf{N}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}}}=$ \qquad N
We know that, equivalent mass of iodine $=127$
Amount of iodine present in the given dm^{3} of solution (X)

$$
\begin{aligned}
& =\text { Normality of iodine } x \text { Eq.mass of iodine(127) } \\
& =. \ldots \mathrm{g}
\end{aligned}
$$

Amount of iodine present in 100 cc of solution $=\frac{\mathbf{x}}{\mathbf{1 0}} \quad=\ldots \ldots \ldots . \mathrm{g}$

Result:

1.	Normality of potassium dichromate solution	$\ldots \ldots \mathrm{N}$
2.	Normality of sodium thiosulphate solution	$\ldots \ldots \ldots \mathrm{N}$
3.	Normality of iodine present in the given solution	$\ldots \ldots \mathrm{N}$
4.	Amount of iodine present in the 100 cc of solution	$\ldots \ldots \mathrm{g}$

11. DETERMINATION OF ZINC

Aim: To prepare the standard zinc sulphate solution, standardize of EDTA solution and to determine Zn^{2+} in the given solution.

Apparatus: Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Ammonium chloride, ammonium hydroxide, EDTA, zinc sulphate, Eriochrome black-T indicator etc,

Theory: $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (Mol.wt $=\mathrm{M}=287.54$), though not a primary standard, but quiet stable, easily water soluble compound used for standardisation of EDTA in the complexometric titration. The amount of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ to be weighed to prepare any volume (V) and any concentration (m) is calculated by using the equation (m)MV/1000. The standard solution of ZnSO_{4} is used in this experiment to standardize di- sodium salt of EDTA.

EDTA (Ethylene diamine tetraacetic acid) is a reagent which forms a complex compound with metal ions such as $\mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ etc.

The EDTA is used in the form of its disodium salt (Na_{2}-EDTA.). It acts as hexa-dentate ligand during the formation of metal complex. The ionization of the metal complex depends on the p^{H} of the solution. It is kept nearly 10 by adding a suitable buffer. In this titration, the pH sensitive Erichrome black-T (EBT) metal ion indicator is used. The solution is initially wine red due to the formation of less stable metal - indicator complex ($M-E B T$). As titration proceeds, the added EDTA snatches all the metal ions from the wine red coloured M-EBT complex and forms more stable colourless metal - EDTA complex (M-EDTA) leaving behind blue colour due to EBT anions. Therefore, at the end point the solution turns wine red to blue.

The titration of ZnSO_{4} solution v/s EDTA is an example of complexometric titration in which Zn^{2+} forms a complex with EDTA. This reaction is carried out at the pH around 10 using the suitable buffer solution. Eriochrome black-T is used as an indicator which turns wine red to blue at the end point.

$$
\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}+\mathrm{Zn}^{2+} \longrightarrow \mathrm{ZnH}_{2} \mathrm{EDTA}(\text { complex })+2 \mathrm{Na}^{+}
$$

Procedure:

A. Preparation of standard $(\mathbf{0 . 0 5} \mathrm{M})$ zinc sulphate solution:

Accurately weighed $(1.4377 \mathrm{~g}) \mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ is transferred to a beaker and dissolved by adding distilled water. The solution is carefully transferred (along with washings) to the 100 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.
(Method of Preparation of $\mathrm{pH}=10$ buffer solution : It is prepared by taking 17.5 g of $\mathrm{NH}_{4} \mathrm{Cl}$ and 150 cc of $17 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ solution and further diluting with distilled water up to the mark in 250 cc volumetric flask)

B. Standardization of di-sodium salt of EDTA solution:

Exactly 25 cc of zinc sulphate solution is pipetted out into a clean conical flask. To this 5 cc of buffer solution and 4 drops of Eriochrome black-T indicator are added. It is titrated against EDTA solution till the colour changes from wine red to blue. The titration is repeated to get concordant values.

C. Determination of zinc ions present in the given solution:

The zinc ions present in the given solution is diluted up to the mark by adding distilled water. It is shaken well for uniform concentration or ready solution containing zinc ions may be directly supplied. Exactly 25 cc of zinc ions solution is pipetted out into a clean conical flask. To this 5 cc of buffer solution and 4 drops of Eriochrome black-T indicator are added. It is titrated against EDTA solution till the colour changes from wine red to blue. The titration is repeated to get concordant values. Using appropriate formula amount of zinc ions present in the given solution is determined.

Observations and Calculation

A. preparation of 100 cc of standard (0.05 M) zinc sulphate solution:

The amount of zinc sulphate required $=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{2 8 7 . 5 4} \times \mathbf{1 0 0}}{\mathbf{1 0 0 0}}=1.4377 \mathbf{g}$
Mass of empty watch glass
Mass of watch glass + zinc sulphate
$: \mathrm{m}_{1}=\ldots \ldots . . \mathrm{g}$
Mass of zinc sulphate
: $\mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
If the value of mass of zinc sulphate weighed differs from 1.4377 g then, molarity of zinc sulphate solution is calculated by
\therefore Molarity of zinc sulphate solution

$$
\begin{aligned}
& =\frac{\text { Mass of } \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \times 4}{\text { Mol.mass of } \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}} \\
& =\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \times 4}{287.54}=\ldots \ldots . \mathrm{N}
\end{aligned}
$$

B. Standardization of di-sodium salt of EDTA solution:

Solution taken in the burette
: Di-sodium salt of EDTA solution
Solution taken in the conical flask : 25 cc of zinc sulphate solution +5 cc of buffer.
Indicator used
: Eriochrome black-T
Colour change at the end point $:$ wine red to blue

Tabulations

Trial No.	Burette readings (cc)		Volume of EDTA added (cc) $(\mathrm{B}-\mathrm{A})$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations :Equation used $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1}=$ Molarity of EDTA
$\mathrm{V}_{1}=$ Volume of EDTA (CBR)
$\mathrm{M}_{2}=$ Molarity of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O} \quad$ and $\quad \mathrm{V}_{2}=$ Volume of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (25)
Molarity of EDTA , $M_{1}=\frac{M_{2} V_{2}}{V_{1}}=-----M$

C. Determination of zinc ions present in the given solution:

Solution taken in the burette
: Di-sodium salt of EDTA solution
Solution taken in the conical flask $: 25 \mathrm{cc}$ of zinc ion solution +5 cc of buffer.
Indicator used
: Eriochrome black-T
Colour change at the end point : wine red to blue

Tabulations

Trial No	Burette readings (cc)		Volume of EDTA	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)	added (cc) (B-A)	
1	0.0			
2	0.0			
3	0.0			

Calculations: Equation used $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1}=$ Molarity of $\mathrm{Zn}^{2+} \quad \mathrm{V}_{1}=$ Volume of Zn^{2+}
$\mathrm{M}_{2}=$ Molarity of EDTA and $\mathrm{V}_{2}=$ Volume of EDTA (CBR),
Molarity of $\mathrm{Zn}^{2+}, \mathrm{M}_{\mathbf{1}}=\frac{\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{1}}}=-----\mathrm{M}$
We know that, atomic mass of $\mathrm{Zn}^{2+}=65.38$
Amount of Zn^{2+} present in the given dm^{3} of solution (X)

$$
=\text { Molarity of } \mathrm{Zn}^{2+} \mathrm{x} \text { Mol.mass of } \mathrm{Zn}^{2+}=.
$$ g

Amount of Zn^{2+} present in 250 cc of solution $=\frac{\mathbf{x}}{4}=$. \qquad g

Result:

1.	Molarity of zinc sulphate solution	$\ldots \mathrm{M}$
2.	Molarity of EDTA solution	$\ldots \ldots \mathrm{M}$
3.	Molarity of zinc ions present in the given solution	$\ldots \ldots \ldots \mathrm{M}$
4.	Amount of zinc ions present in the 250 cc of solution	$\ldots \ldots \mathrm{g}$

12. DETERMINATION OF HARDNESS OF WATER

Abstract

Aim: To determine the temporary, permanent and total hardness of water using standard EDTA method.

Apparatus : Burette, pipette, conical flask, volumetric flask, funnel, beaker etc.
Chemicals : Di-sodium salt of EDTA, Eriochrome black-T indicator, Buffer solution etc.
Theory : The hardness of water is due to the presence of dissolved salts mainly Ca^{+2} and Mg^{+2}. Hard water doesn't give lather easily with soap, as the hardness causing ions react with soap to form insoluble precipitate. There are three types of hardness of water viz. Temporary hardness, Permanent hardness and Total hardness. Temporary hardness is due to bicarbonates of calcium and magnesium, which can be removed by physical treatment that is by simple boiling. On boiling, the bicarbonates are converted into insoluble carbonates of calcium and magnesium. Permanent hardness is due to the presence of chloride and sulphates of calcium and magnesium, which are removed only by chemical treatment. Total hardness is the sum of temporary and permanent hardness. The hardness is expressed in terms of ppm (parts per million) or mg / litre of calcium carbonate.

Hardness of water is determined by titrating a known volume of water sample with disodium salt of EDTA, using Eriochrome Black-T as indicator in the presence of buffer of $\mathrm{pH}=10$. When a few drops of the indicator is added, a wine red coloured complex is formed. This reveals that the indicator forms a wine red coloured complex with calcium and magnesium ions. When the solution is titrated against EDTA (Ethylene Diamine Tetra Acetic acid) which is a strong complexing agent, reacts quantitatively with the metal (calcium, magnesium present in the water sample) ions and forms MEDTA (stable complex). Near the end point when all the metal ions are exhausted from M-EBT complex which are snatched away by EDTA, the indicator molecules are set free in the solution to give blue colour. Therefore, the end point of the titration is observed through colour change from wine red to blue.

Procedure:

A. Preparation of standard $(\mathbf{0 . 0 5} \mathrm{M})$ zinc sulphate solution:

Accurately weighed $(1.4377 \mathrm{~g}) \mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ is transferred to a beaker and dissolved by adding distilled water. The solution is carefully transferred (along with washings) to the 100 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get homogeneous solution.

B. Standardization of di-sodium salt of EDTA solution:

Exactly 25 cc of) zinc sulphate solution is pipetted out into a clean conical flask. To this 5 cc of buffer ($\mathrm{pH}-10$) solution and 4 drops of Eriochrome black-T indicator are added. It is titrated against EDTA solution till the colour changes from wine red to blue. The titration is repeated to get concordant values.

Using appropriate formula exact concentration of EDTA is determined.

C. Determination of total hardness of water:

Exactly 50 cc of hard water solution is pipetted out into a clean conical flask. 5 cc of buffer ($\mathrm{pH}-10$) solution and 2 drops of Eriochrome black-T indicator are added. The solution is titrated against EDTA solution till the colour changes from the wine red to blue. The titration is repeated to get concordant values. Using suitable formula total hardness of given sample of water is determined.

D. Determination of permanent hardness of water:

Exactly 250 cc of hard water is transferred a 500 cc beaker using a standard volumetric flask. It is boiled for 50 minutes and cooled. The magnesium and calcium carbonates precipitated are filtered off and the filtered is collected in a 250 cc standard flask. The volume is then made up to the mark with distilled water and shaken well for uniform concentration. Exactly 50 cc of this water is pipetted out into a clean conical flask. 1cc of buffer solution and 2-3 drops of Eriochrome black-T indicator are added. The solution is titrated against EDTA solution till the colour changes from the wine red to blue. The titration is repeated to get concordant values and permanent hardness of water sample is determined.

E. Determination of temporary hardness of water:

The temporary hardness is calculated by deducting the permanent hardness from the total hardness.

Observations and Calculation

A. preparation of 100 cc of standard (0.05 M) zinc sulphate solution:

The amount of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required $=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{2 8 7 . 5 4} \times \mathbf{1 0 0}}{\mathbf{1 0 0 0}}=1.4377 \mathbf{g}$
Mass of empty watch glass
: $\mathrm{m}_{1}=$ \qquad
Mass of watch glass + zinc sulphate $\quad: \mathrm{m}_{2}=\ldots \ldots . . \mathrm{g}$
Mass of zinc sulphate $\quad:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=--------\mathrm{g}$
If the value of mass of zinc sulphate weighed differs from 1.4377 g then, molarity of zinc sulphate solution is calculated by
\therefore Molarity of zinc sulphate solution $=\frac{\text { Mass of } \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \times 4}{\text { molecular mass of } \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}}$

$$
=\frac{\left(m_{2}-m_{1}\right) \times 4}{287.54}=\ldots \ldots . \mathrm{N}
$$

B. Standardization of di-sodium salt of EDTA solution:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point Tabulations
: Di-sodium salt of EDTA solution
: 25 cc of zinc sulphate solution +5 cc of buffer.
: Eriochrome black-T
: wine red to blue

Trial No	Burette readings (cc)		Volume of EDTA added (cc) (B -A$)$	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
2	0.0			
3	0.0			

Calculations : Equation used $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1}=$ Molarity of EDTA,$\quad \mathrm{V}_{1}=$ Volume of EDTA (CBR)
$\mathrm{M}_{2}=$ Molarity of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ and $\quad \mathrm{V}_{2}=$ Volume of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Molarity of EDTA, $\mathbf{M}_{1}=\frac{\mathbf{M}_{2} \times \mathbf{V}_{2}}{\mathbf{V}_{1}}=-----M$

C. Determination of total hardness of water:

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: Di-sodium salt of EDTA solution
: 50 cc of hard water sample +5 cc of buffer.
: Eriochrome black-T
: wine red to blue

Trial No	Burette readings (cc)		Volume of EDTA added (cc) (B - A)	Concordant burette reading in cc (CBR)
	Initial (A)	Final (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations :

Equation used $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1}=$ Molarity of hard water $\mathrm{V}_{1}=$ Volume of of hard water(25)
$\mathrm{M}_{2}=$ Molarity of EDTA $\quad \mathrm{V}_{2}=$ Volume of EDTA (CBR)
Molarity of of hard water : $\mathbf{M}_{1}=\frac{\mathbf{M}_{2} \times \mathbf{V}_{2}}{\mathbf{V}_{1}}=\cdots----M$
We know that Mol.mass of $\mathrm{CaCO}_{3}=100$
Total hardness of water in terms of mass of CaCO_{3} in 1000 g or dm 3 (1000 cc) of water

$$
=\text { Molarity of hard water X Molecular mass of } \mathrm{CaCO}_{3}(100) .=\text {.........g }
$$

Total hardness of water in terms of mass of CaCO_{3} in million gram of water $=$ Molarity of hard water Molecular mass of CaCO_{3} X 10 $^{6} / 1000$
$=\ldots \mathrm{ppm}$ or $\mathrm{mg} / \mathrm{dm}^{3}=\boldsymbol{a}$

D. Determination of permanent hardness of water:

Solution taken in the burette
Solution taken in the conical flask

Indicator used
Colour change at the end point
: Di-sodium salt of EDTA solution
: 50 cc of hard water after removal of temporary hardness +5 cc of buffer.
: Eriochrome black-T
: wine red to blue

Tabulations

$\begin{aligned} & \text { Trial } \\ & \text { No } \end{aligned}$	Burette readings (cc)		Volume of EDTA added (cc) ($\mathrm{B}-\mathrm{A}$)	Concordant burette reading in cc (CBR)
	Initial reading (A)	Final reading (B)		
1	0.0			
2	0.0			
3	0.0			

Calculations:

Equation used $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
& M_{1}=\text { Molarity of hard water } \quad V_{1}=\text { Volume of of hard water } \\
& M_{2}=\text { Molarity of EDTA } \quad \text { and } V_{2}=\text { Volume of EDTA }(C B R)
\end{aligned}
$$

Molarity of of hard water, $\mathbf{M}_{1}=\frac{\mathbf{M}_{2} \times \mathbf{V}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{1}}}=-\cdots---\mathrm{M}$
We know that Mol.mass of $\mathrm{CaCO}_{3}=100$
Permanent hardness of water in terms of mass of CaCO_{3} in $1000 \mathrm{~g} \mathrm{or} \mathrm{dm}^{3}$ (1000 cc) of water

$$
=\text { Molarity of hard water X Molecular mass of } \mathrm{CaCO}_{3}=\ldots \mathrm{g}
$$

Permanent hardness of water in terms of mass of CaCO_{3} in million gram of water
$=$ Molarity of hard water Molecular mass of $\mathrm{CaCO}_{3}(100) \times 10^{6} / 1000$
$=\ldots \mathrm{ppm}$ or $\mathrm{mg} / \mathrm{dm}^{3}=\boldsymbol{b}$

D. Determination of temporary hardness of water:

Temporary hardness of water $=$ Total hardness of water - Permanent hardness of water

$$
\boldsymbol{a}-\boldsymbol{b}=\ldots \mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{dm}^{3}
$$

Result:

1.	Molarity of zinc sulphate solution	$\ldots \ldots \ldots \mathrm{M}$
2.	Molarity of EDTA solution	$\ldots \ldots \ldots \mathrm{M}$
3.	Total hardness of water	$\ldots \ldots \ldots . . . \mathrm{ppm}$
4.	Permanent hardness of water	$\ldots \ldots \ldots . . \mathrm{ppm}$
5.	Temporary hardness of water	$\ldots \ldots \ldots \mathrm{ppm}$

Reference Books:

1. A Text Book of Quantitative Inorganic Analysis ($3^{\text {rd }}$ edition) - A.I. Vogel.
2. Fundamentals of Analytical Chemistry ($8^{\text {th }}$ edition)- Skoog, West,Holler \& Crouch.
3. Analytical Chemistry($6^{\text {th }}$ Edition)- Gary Christian
4. A Textbook of Systematic Practical Chemistry-Dr.R.S.Hamsagar
5. A hand book of Analytical Chemistry - Subhash \& Satish \& Lal.

B.Sc II Sem
 Organic Chemistry Experiments

| Total No of hours/week : 4Hrs | Total No of hours/week : 4Hrs |
| :--- | :--- | :--- |
| Total No. of Hours $: 54 \mathrm{Hrs}$ | Total No. of Hours $: 54 \mathrm{Hrs}$ |

Exp No.	CONTENTS	Page No.
1.	Explanation regarding crystallization, fractional crystallization, sublimation, fractional distillation, distillation under reduced pressure and steam distillation.(Students should write in the journal regarding the above)	48
2.	Recrystallisation and determination of melting point of crystallized solid. Mixed melting point determination and its importance may be mentioned.	55
3.	Preparation of acetanilide from aniline	58
4.	Preparation of phthalimide from phthalic anhydride	60
5.	Preparation of p-nitroacetanilide from acetanilide	62
6.	Preparation of aspirin from salicylic acid	64
7.	Preparation of 1,11-bis-2-naphthol from 2-naphthol	66
8.	Estimation of Phenol by bromination method	68
9.	Estimation of Aniline by bromination method	71
10.	Estimation of Acetamide	77
11.	Estimation of Carboxylic acids	80
12.	Estimation of Aspirin	77

Note:
In a batch of ten students, for six students preparation experiments and for four students estimations may be given in the practical examination. Two different preparations and two different estimations may be distributed to the students. Selection of experiments may be done by the students based on the picking up of chits. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. During practical examination chart is not allowed, wherever necessary simple procedure may be given.

1. PURIFICATION OF ORGANIC COMPOUNDS

Organic compounds never occur singly at a source but are found associated with many other compounds. Quite often, these compounds have similar properties. An organic compound synthesized in the laboratory is contaminated with other substances produced in side reactions of the process. The purification of organic compounds is therefore important and is the first step before the elucidation of the molecular structure. Following are the commonly employed methods of purification.

I.A. METHODS OF PURIFICATION OF SOLID COMPOUNDS

1. CRYSTALLISATION:

An impure compound is converted into its crystals this process is known as crystallisation. The differences in the solubility of the compound and impurities in a solvent is the concept used in this method. If the compound is highly soluble in one solvent and is sparingly soluble in another solvent then the compound is recrystalised using mixture of respective solvents. Also, the solvent chosen is such that the solubility of the compound is much less at room temperature and relatively more as the temperature increases. A saturated solution of the substance is prepared at a high temperature and filtered while hot. A fluted filter paper is used for rapid filtration. On cooling the filtrate, the pure compound crystalises out from the solution and highly soluble impurities remain in the solution.

If the solid is associated with coloured impurities then the colour is removed by adsorption technique using activated charcoal treatment. The size of crystals depends on the manner of cooling. Very gradual cooling gives big crystals but not very pure, whereas quick cooling gives tiny pure crystals.

- If the solute is less soluble than the impurities, it crystallizes first leaving behind the impurities in the solution. The most commonly used solvents are: Water (2) Rectified spirit (3) Absolute ethanol (4) Acetic acid (5) Acetone (6) Methyl alcohol (7) Chloroform (8) Benzene (9) Carbon tetrachloride (10) Ethyl acetate.

The process of crystallization comprises the following steps: (1) Selection of solvent (2) Preparation of solution of solute (compound) in the chosen solvent. (3) Decolourisation of solution by using activated charcoal (4) Filtration of solution to remove suspended solids (5) Crystallisation. (6) Washing the crystals (7) Drying.

Procedure: The impure organic compound is dissolved in a solvent in which it is sparingly soluble at room temperature and relatively soluble at high temperature to get nearly saturated solution. The hot solution is filtered to separate insoluble impurities and is allowed to cool. Pure compound crystallizes out from the solution and highly soluble impurities remain in the solution. If the compound is highly soluble in one solvent and sparingly soluble in another solvent then the compound is recrystallised using mixture of these solvents. If the compound is associated with colored impurities then the colour is removed by adsorption using activated charcoal.

Fig. Filteration Technique

(a) FRACTIONAL CRYSTALLISATION :

This method is useful when two or more components of a mixture need to be purified and all the components are soluble in a particular solvent. The whole process is actually a series of crystallisations (viz. Separation of sugar and salt). The difference in the solubilities of components in the solvent is made use of in this process. The mixture of compound X and compound Y is dissolved in the solvent at a higher temperature and then cooled. On cooling the crystals of the less soluble component say X, separates out. The solution is filtered to obtain the crystals of X contaminated with the crystals of Y. These crystals are further subjected to the above process and eventually the crystals of pure X are obtained. The filtrate after the removal of the less soluble component X is concentrated by boiling. On cooling this filtrate, crystals of Y separates out. These are again contaminated with the component X which can be removed by repeated crystallisation. Thus, separation and purification of the components is possible. Example: Mixture of benzoic acid and naphthalene can be separated from hot water in which benzoic acid is soluble while naphthalene is insoluble.

(b) SUBLIMATION:

Sublimation is a process where a solid directly changes to vapour on heating. Particularly some substances whose vapour pressure becomes equal to the atmospheric pressure much before their respective melting points, are capable of undergoing sublimation (viz. Naphthalene, benzoic acid, camphor, anthracene etc.,) This process is very useful for the separation and purification of solids which sublime on heating from non-volatile solids (Fig.1).

Procedure: The impure solid is taken on a china dish and covered with a perforated asbestos sheet or paper. An inverted funnel is placed over it. The end of the stem is plugged with cotton or paper and the sides are kept cooled. The dish is heated gently on a sand bath the crystals sublime and condense on the inner sides of the funnel. The non volatile impurities are left behind.

Fig. 1. Sublimation

1.B METHODS OF PURIFICATION FOR LIQUIDS

DISTILLATION:

Distillation is a method applied to separate constituents of liquid mixture which are differing in their boiling points [Benzene $\left(80^{\circ} \mathrm{C}\right)$, Aniline $\left(184^{\circ} \mathrm{C}\right)$, Chloroform $\left(61^{\circ} \mathrm{C}\right)$, Benzaldehyde $\left(184{ }^{0} \mathrm{C}\right)$]. The normal boiling point of a liquid is that temperature at which its vapour pressure is equal to the atmospheric pressure. All the organic liquids after heating are converted into vapours based on their fixed boiling point. In this process the liquid is allowed to boil, the vapours are condensed and collected.
(a) SIMPLE DISTILLATION: The simple distillation is a process applied for volatile
liquids which boil without decomposition at atmospheric pressure and contain non volatile impurities. Simple distillation can be applied in cases where the two liquids differ in their boiling points by $40^{\circ} \mathrm{C}$ or more. (Viz. Mixture of $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$)

The apparatus consists (Fig.3) of a distillation flask (a round bottom flask with a side tube) connected to a condenser. A clean receiver is kept at the end of the condenser. A cork carrying a thermometer is fitted in the flask in such a way that the bulb of the thermometer is near the side tube of
the distilling flask. Depending upon the boiling point of the liquid, an air condenser (for liquids with boiling point greater than $130^{\circ} \mathrm{C}$) or a Liebig's condenser (water cooled condenser) is used. Further, heating may be direct on a wire gauze or on a sand bath. A few glass beads or porcelain bits are added to the liquid to prevent bumping of the liquid during heating.

Fig. 3 Simple distillation
The flask and the condenser are clamped then heated therby the liquid boils and distillation starts. The vapours of pure liquid pass through the side tube, condense and are collected in the receiver. The impurities are left behind in the distillation flask.

(b) FRACTIONAL DISTILLATION:

In this process the distillate is collected in fractions under different temperatures which is known as fractional distillation. In cases where the boiling points of the components are fairly close ($\mathrm{Viz} .\left[\mathrm{C}_{6} \mathrm{H}_{6}+\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right],\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{OH}\right]$ etc.) a fractionating column is used (Fig.4). Different types of fractionating columns are known but all of them work on the same principle.

Fig: Fractional distillation

Fig. 3. Fractional distillation. The vapours of lower bolling fraction reach the top of the column first followed by vapours of higher boiling fractions.

Fio 4 Frantinnotino

The fractionating column is fitted to the distilling flask at its mouth. A condenser is connected at the top end of the column; a thermometer is also fixed in the open end of the column. The apparatus is set as in the case of simple distillation. On heating the liquid mixture, the vapours of both the components rise up through the fractionating column but the less volatile component condenses after moving some height.

As it flows down, it meets the upcoming vapour mixture and due to heat exchange, the vapours of the more volatile component continue to move up while the vapours of the less volatile component condense and flow down. Thus the vapours of the more volatile component reach the upper end of the column, condense in the condenser and are collected in the receiver. The less volatile component is left behind in the flask. The process may be repeated to get very pure liquids. Thus two or more liquids from a mixture can be easily separated using a fractionating column.

(c) DISTILLATION UNDER REDUCED PRESSURE:

High boiling liquids as well as liquids which decompose at or below their normal boiling points cannot be purified by distillation at ordinary atmospheric pressure. These are generally distilled under reduced pressure or at vacuum when the liquid boils at a lower temperature. A special apparatus is used for this purpose (Fig.5).

During this process the atmospheric pressure is reduced whereby the liquid will boil earlier than its normal boiling point (Viz. Distillation for cane juice and glycerol in sugar and soap industry respectively) then the safe separation of compound is achieved. A double necked flask called Claisen's flask is employed. A cork carrying a thermometer is fitted into the smaller of the two necks. Through the main neck, a long capillary tube dipped into the liquid is introduced.

Fig.5. Distillation under reduced pressure

The upper end of the capillary tube is closed by means of a clip. This prevents bumping of the liquid, more pronounced in distillation under reduced pressure. A condenser is joined to the side tube which in turn is connected to a filtration flask. The filtration flask serves as a receiver and its side tube is connected to a vacuum pump through a manometer. The distillation carried out after reducing the pressure. The liquid boils at temperatures much below its normal boiling point and any decomposition of the compound is prevented. Example manufacture of cane sugar and glycerol.

(d) STEAM DISTILLATION :

In steam distillation, the liquid boils when the sum of vapour pressure due to the organic liquid $\left(p_{1}\right)$ and that due to water $\left(p_{2}\right)$ becomes equal to the atmospheric pressure (p) that is given as $p=p_{1}+p_{2}$, since the p_{1} is lower than p, the organic liquid vaporises at lower temperature than its boiling point.

The mixture of immiscible liquids boils when the sum of the vapour pressure of components becomes equal to the external pressure. In this process, the organic liquid is distilled along with steam so that the mixture boils at a temperature below $100^{\circ} \mathrm{C}$ (since boiling point of pure water is $100{ }^{\circ} \mathrm{C}$). Therefore, this type of distillation is essentially a co-distillation with water which is carried out when a solid or liquid immiscible with water and is steam volatile containing non volatile impurities. In steam distillation, the vapours coming out at every stage is a mixture of steam and organic liquid so that the temperature at which the mixture boils is lower than the boiling point of either of the components. (Viz., Purification of aniline, nitrobenzene, Chlorobenzene.o-and p-Nitrophenol can be separated by steam distillation. During steam distillation, o-nitrophenol is carried over by steam while p-nitrophenol remains in the flask).

Fig.6. Steam distillation

A steam generator is connected to a round bottom flask containing the organic liquid (Fig.6). The flask is clamped in a slanting position and connected to a condenser then to a receiver. (The slanting position of the flask prevents the liquid from splashing into the condenser). The steam enters the flask and the liquid begins to boil. Vapours of organic liquid and steam pass over, get condensed and collect in the receiver. To avoid too much condensation of steam in the flask, the flask is gently heated till the distillation is over. Further,the mixture of organic liquid and water collected in the receiver is then separated using a separating funnel and finally dried.

2. RECRYSTALLISATION AND DETERMINATION OF MELTING POINT AND MIXED MELTING POINT OF THE CRYSTALLISED SOLID

The crude products obtained after most of the preparations of organic compounds are contaminated may be with un-reacted starting materials and substances from side-reactions. These can often be eliminated by a simple process known as re-crystallisation.

Re-crystallization is a rapid and convenient way of purifying a solid organic compound. These crystals are the purest form of the substance having definite crystalline structure and shape (provided the appropriate conditions are maintained). The product to be purified is dissolved in the hot appropriate solvent. As the solvent cools, the solution becomes saturated with respect to the substance which then crystallizes and the impurities remain in the solution. If the compound is highly soluble in one solvent and is sparingly soluble in another solvent then the compound is re-crystallized using mixture of those respective solvents.
a) MELTING POINT: The temperature at which a solid melts is known as the melting point (MP) of that substance. The melting point is a physical property of a solid, this helps to identify a substance. In practice, a solid usually melts over a range of temperatures rather than at one specific temperature. For this reason it is more useful to speak of a melting point range. If the compound melts over a very narrow range, it can usually be assumed that the compound is relatively pure. Conversely, compounds that melt over a wide range are assumed to be relatively impure.

Fig.7a. Thele's tube

Fig.7b . Melting point determination

An experimental setup is depicted hereunder with Fig.7b. A Thiele's tube shown in Fig.7a is a glass instrument. This is filled with paraffin oil. The Thiele's tube may also be used to determine the boiling point of liquid sample.

The bent shape of the Thiele tube allows for formation of convection currents in the oil when it is heated. These currents maintain a fairly uniform temperature distribution throughout the oil in the tube. The side arm of the tube is designed to generate these convection currents and thus transfer the heat from the flame evenly and rapidly throughout the heating oil.

Take a capillary tube close at its one end by heating on a flame. Now, ground the given organic compound (whose melting point is to be determined) into a fine powder on a porcelain tile using spatula. Fill small amount of the compound into the capillary tube. Tie the capillary tube (containing the substance) parallel to the thermometer bulb using a thread. The whole assembly is introduced in to a Thele's tube containing liquid paraffin in such a way that the bulb of the thermometer and capillary tube are parallel to the upper side arm of the Thele's tube. Heat the lower side arm of the Thele's tube slowly with a wavy flame using a micro burner. During heating observe the temperature carefully so also the physical state of the solid. When compound in the capillary tube starts to melt, the temperature slowly rises to a particular point the solid suddenly melts completely. This is considered as the melting point of the given organic compound.

b) MIXED MELTING POINT:

The phenomenon of melting point depression can be applied to the identification of unknown pure substances. In the majority of the cases the presence of a foreign substance will lower the melting point of a pure organic compound.

This hint is utilized in the so called mixed melting point of pure organic compound. For example, if you measure the melting point of a sample at $160^{\circ} \mathrm{C}$, you will find from the MP table that this is the same melting point for several different reference compounds. The substance can be identified by determining its mixed melting point wherein, the sample is mixed one-by-one with small amounts of the references and the mixed melting point is determined in each case. Whenever the melting point of the sample is depressed by mixing a small amount of a reference with it, the two substances cannot be identical. If the melting point of the mixture does not drop it indicates that the reference substance which was added is identical to the sample (i.e. the sample has been identified).

As an illustration, take pure benzoic acid ($\mathrm{MP}=122^{\circ} \mathrm{C}$) and 2-naphthol ($\mathrm{MP}=123{ }^{\circ} \mathrm{C}$) or Acetanilide ($\mathrm{MP}=114{ }^{\circ} \mathrm{C}$) and Antipyrin ($\mathrm{MP}=113{ }^{\circ} \mathrm{C}$). Approximately equal mass ($50 \mathrm{mg}: 50 \mathrm{mg}$) of the two compounds either combinations mentioned above are placed on a clean porcelain tile. These are
mixed thoroughly using a spatula. The capillary tube is filled with requisite amount of the mixture. Place it in the melting point apparatus alongside the capillary tubes filled with each of the two components. The considerable depression of the melting point behavior of the mixture and pure substances will clearly show the melting point lower than that of the pure substances.

Similarly, the determination of mixed melting point of of urea and succinic acid mixture is as follows. Mixtures of urea: succinic acid in 1:3 and 3:1 ratios (by mass) have been prepared.Record the melting point range of the 1:3 ratio sample and then record the melting point range of the 3:1 ratio sample. Qualitatively, note the melting behaviour of these mixed samples as compared to those of the pure samples.

3. PREPARATION OF ACETANILIDE FROM ANILINE

Aim : To prepare acetanilide from aniline.
Chemicals required: Aniline, acetic anhydride or acetyl chloride, glacial acetic acid, zinc dust etc. Apparatus required: 100 or 250 cc R.B. Flask, water condenser, Buchner funnel etc.

Principle:

The replacement of the hydrogen atom from the compounds containing $-\mathrm{OH},-\mathrm{NH}_{2}$, -NH - groups by acetyl $\left(-\mathrm{COCH}_{3}\right)$ group is called acetylation. Acetyl chloride or acetic anhydride is used as acetylating agent. Acetylation of aniline can be readily achieved on reacting with acetic anhydride / acetyl chloride. Acetyl chloride, though most reactive, is very difficult to handle, because it is corrosive and has tendency to get hydrolysed by moisture. Acetic anhydride and acetic acid with zinc dust are most commonly employed for the reaction.

In presence of zinc dust acetic acid can be used as acetylating agent to form acetanilide. The Zn dust is used as a catalyst and reducing agent which prevents oxidation of aniline.

Mechanism:

Procedure:

Take 5 cc of aniline, $10-12 \mathrm{cc}$ of glacial acetic acid and 0.5 g of zinc dust in a 100 cc round bottom flask. Shake the reaction mixture thoroughly and then reflux it gently for about 45 minutes using water condenser. The reaction mixture is then carefully poured into 250 cc beaker containing 100 cc of ice cold water. Acetanilide is separated slowly. After 15 min ., the acetanilide is collected by filtration using Buchner funnel and washed the product with cold water. Dry the product by pressing between the filter papers and weigh to record the yield. Use a small amount for re-crystallization with hot water (If necessary, charcoal may be used for decolourisation).

Uses: Acetanilide is used as one of the precursor in the synthesis of penicillin and other pharmaceuticals. It has also applications in the intermediation in rubber accelerator synthesis, dye intermediate synthesis, and also in the synthesis of camphor.

CALCULATION OF PERCENTAGE YIELD OF THE PRODUCT

$$
\% \text { Yield }=\frac{\text { Experimental Yiled }}{\text { Theoretical Yield }} \times 100
$$

Result:

S.No.	Particulars		
1.	Name of the product obtained		
2.	Molecular and structural formula		
3.	Mass of the product (g)		
4.	\% Yield of the product obtained.		
5.	Solvent used for re-crystallization		
6.	Colour and nature of the re-crystallized product		
7.	Melting point (a) Experimental (b) Literature	$\begin{aligned} & ------{ }^{0} \mathrm{C} \\ & \mathbf{1 1 4 - 1 1 5} \end{aligned}$	${ }^{0} \mathrm{C}$

4.PREPARATION OF PHTHALIMIDE FROM PHTHALIC ANHYDRIDE

Aim: To Prepare Phthalimide from phthalic anhydride.
Chemicals : Phthalic anhydride, urea and rectified spirit or ether.
Apparatus required: 250 cc conical flask or R. B. Flask, beaker, glass rod, Buchner funnel etc.

Principle:

Phthalic anhydride reacts with urea and undergoes condensation reaction to form phthalimide with the elimination of ammonia and carbon dioxide.

Mechanism:

Procedure:

4 g of phthalic anhydride and 2 g of urea is mixed thoroughly in a pestle mortar. The mixture is introduced into a 250 cc conical flask. The flask is heated on a sand bath. The reaction begins with frothing of the mass and the temperature is raised to about $160^{\circ} \mathrm{C}$. Heating was stopped when the frothing subsides; cold water added to the spongy solid mass. The content was filtered in a Buchner funnel with suction. Product is washed with water. The product dried by pressing it with the filter paper and mass of the product noted.

A minimum quantity of the product is used for re-crystallisation using rectified spirit or ether as the solvent. The re-crystallized product is dried and used for the determination of its melting point.

CALCULATION OF PERCENTAGE YIELD OF THE PRODUCT

$$
\% \text { Yield }=\frac{\text { Experimental Yiled }}{\text { Theoretical Yield }} \times 100
$$

Uses: Phthalimide is used in plastics, in chemical synthesis, etc.,

Result:

S.No.	Particulars	
1.	Name of the product obtained	
2.	Molecular and structural formula	
3.	Mass of the product (g)	
4.	\% Yield of the product obtained.	
5.	Solvent used for re-crystallization	
6.	Colour and nature of the re-crystallized product	
7.	Melting point (c) Experimental (d) Literature	$\begin{aligned} & -\cdots---{ }^{0} \mathrm{C} \\ & 233-234{ }^{0} \mathrm{C} \end{aligned}$

5. PREPARATION OF \boldsymbol{p}-NITRO ACETANILIDE FROM ACETANILIDE

Aim : To prepare p-nitroacetanilide from acetanilide
Chemicals: Acetanilide, glacial acetic acid, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and conc. HNO_{3}, alcohol etc.
Apparatus required: 250 ml Beaker, Glass rod, Ice bath, Wash bottle, Filter paper, Buchner funnel and Thiele's apparatus for Melting point determination.

Principle: p-nitroacetanilide is prepared by nitration of acetanilide with nitrating mixture (mixture of conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) in cold condition. Anilide $\left(-\mathrm{NHCOCH}_{3}\right)$ group is ortho, para directing group there fore during nitration it also gives small amount of ortho nitroacetanilide.

Mechanism:

Step-I: Generation of electrophile
Step-II: Electrphilic attack
Step-II: Regaining the aromaticity by deprotonation

Procedure:

5 g of acetanilide is taken in a 100 cc conical flask and is dissolved by adding 5 cc of glacial acetic acid. 10 cc of conc. sulphuric acid is added carefully and the reaction mixture is cooled in an ice bath. 6 cc of conc. nitric acid is added to the reaction mixture drop wise with constant shaking (so that the temperature does not rise above $10^{\circ} \mathrm{C}$). After the addition of acid, the reaction mixture is shaken for about 30 minutes. The reaction mixture is poured into a beaker containing ice water. The content is filtered off and then product is washed with cold water. The product dried by pressing it with the filter paper and mass of the product noted.

A minimum quantity of the product is used for recrystallisation using alcohol as the solvent. The recrystallized product is dried and used for the determination of its melting point.

Uses: p-Nitroacetanilide is used as an intermediate in the production of some dyes.

CALCULATION OF PERCENTAGE YIELD OF THE PRODUCT

$$
\% \text { Yield }=\frac{\text { Experimental Yiled }}{\text { Theoretical Yield }} \times 100
$$

Result:

S.No.	Particulars	
1.	Name of the product obtained	
2.	Molecular and structural formula	
3.	Mass of the product (g)	
4.	\% Yield of the product obtained.	
5.	Solvent used for re-crystallization	
6.	Colour and nature of the re-crystallized product	
7.	Melting point (a) Experimental (b) Literature	$\begin{aligned} & -------{ }^{0} \mathrm{C} \\ & 214-215{ }^{0} \mathrm{C} \end{aligned}$

6. PREPARATION OF ASPIRIN FROM SALICYLIC ACID

Aim : To prepare aspirin from salicylic acid.
Chemicals: Salicylic acid, acetic anhydride, $\mathrm{FeCl}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, ethanol, etc.
Apparatus required: 250 cc conical flask, Glass rod, Funnel etc.
Aspirin is also known as acetylsalicylic acid. This is an important drug worldwide and conventionally is prepared by an acid-catalyzed process. Preparative method uses acetic anhydride in the reaction instead of acetic acid. An acid catalyst, like sulfuric acid or phosphoric acid, is used to speed up the process.

Mechanism:

Procedure:

4.0 g of salicylic acid is taken in a 250 cc conical flask, 6 cc of acetic anhydride and 5 drops of concentrated sulfuric acid are added to the flask. Then contents are swirled gently and the flask is placed in a boiling water bath for 20 minutes along with stirring using a glass rod (the entire solid must completely be dissolved). The flask is removed from the boiling water bath and allowed to cool to the room temperature. (Formation of crystals during cooling is avoided!). The reaction mixture poured
slowly into a 250 cc beaker containing about 50 cc of ice water, mixed thoroughly and placed the beaker in ice water bath; it is kept undisturbed until crystals grown. The contents filtered in a Buchner funnel with suction. The product obtained is washed with about 20 cc of ice water followed by 10 cc of cold ethanol. The product dried by pressing it with the filter paper and mass of the product noted.

A minimum quantity of the product dissolved by adding ethanol in a 100 cc conical flask, warm it on water bath then the contents filtered. The product obtained is dried. The re-crystallized product used to determine its melting point.

Uses: Aspirin is often used as analgesic, antipyretic, anti-inflammatory agent. Aspirin is also used at low doses to prevent heart attacks, strokes, and blood clot formation in people at high risk of developing blood clots. It has also been established that low doses of aspirin may be given immediately after a heart attack to reduce the risk of another heart attack or of the death of cardiac tissue. Aspirin is one of the most widely used medicine in the world, with an estimated 40,000 tonnes of it being consumed each year.

Result:

S.No.	Particulars	
1.	Name of the product obtained	
2.	Molecular and structural formula	
3.	Mass of the product (g)	
4.	\% Yield of the product obtained.	
5.	Solvent used for re-crystallization	
6.	Colour and nature of the re-crystallized product	
7.	Melting point a) Experimental b) Literature	$\begin{aligned} & ------{ }^{0} \mathrm{C} \\ & 134-135{ }^{0} \mathrm{C} \end{aligned}$

7. PREPARATION OF 1,1'- bis-2-NAPHTHOL FROM 2-NAPHTHOL

Aim : To Prepare 1,1-bis-2-naphthol from 2-naphthol.
Chemicals: 2-Naphthol, Toluene and FeCl_{3} solution etc.
Apparatus required: 250 cc beaker, watch glass rod, funnel, etc.

Principle:

The 2-Naphthol readily undergoes oxidation with iron (III) chloride by a single electron transfer process. This leads to the formation of mesomerically stabilized radical species which then dimerises. It is called oxidative coupling reaction. The 1,1`-bis-2 naphthol forms coloured complex with iron.

Naphthalen-2-ol

1,1-bis-2-naphthol

Mechanism:

Procedure:

1.5 g of 2^{\prime}-naphthol is taken in a 250 cc conical flask and 20 cc of water is added to it. The contents are subjected to boiling. To the boiling reaction mixture, 3.0 g of ferric chloride in $10-15 \mathrm{cc}$ of water is added slowly with vigorous stirring till the oily drops of 2-naphthol disappear. The 1,1'-bis-2naphthol separated out, further the heating is continued for another 5-10 minutes. Filter the hot
suspension. The product obtained is washed with hot water. The product dried by pressing it with the filter paper and mass of the product noted.

A minimum quantity of the product is used for recrystallisation using toluene as the solvent. The recrystallized product is dried and used for the determination of its melting point.

Uses: 1,1'-bis-2-naphthol (BINOL) is used as a ligand for transition-metal catalysed asymmetric synthesis.

Result:

S.No.	Particulars	
1.	Name of the product obtained	
2.	Molecular and structural formula	
3.	Mass of the product (g)	
4.	\% Yield of the product obtained.	
5.	Solvent used for re-crystallization	
6.	Colour and nature of the re-crystallized product	
7.	Melting point a) Experimental c) Literature	$\begin{aligned} & -\cdots---{ }^{0} \mathrm{C} \\ & 218-219{ }^{0} \mathrm{C} \end{aligned}$

8. ESTIMATION OF PHENOL BY BROMINATION METHOD

Aim: To estimate the amount of phenol in the given solution.
Chemicals: Phenol solution (provided in volumetric flask), $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, brominating mixture, 10% KI solution, starch solution, conc. HCl etc.,

Apparatus required: Burette, Pipette, Iodine flasks, conical flask etc.

Principle: On adding a known volume of brominating mixture to the phenol solution, tribromophenol is precipitated. The excess of bromine that liberates an equivalent amount of iodine on addition of potassium iodide is determined by titrating the reaction mixture with standard solution of sodium thiosulphate using starch as an indicator. Thus, knowing the amount of bromine solution consumed then the quantity of phenol in the given solution is calculated.

$$
\begin{equation*}
5 \mathrm{KBr}+\mathrm{KBrO}_{3}+6 \mathrm{HCl} \longrightarrow 6 \mathrm{KCl}+3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

Phenol 2,4,6-Tribromophenol

$$
\begin{aligned}
2 \mathrm{KI}+\mathrm{Br}_{2} & \longrightarrow 2 \mathrm{KBr}+\mathrm{I}_{2} \\
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{aligned}
$$

Sodium tetrathionate

Procedure:

A. Blank titration:

Pipette out 10 cc of brominating mixture $\left(\mathrm{KBr}^{2} \mathrm{KBrO}_{3}\right)$ is taken in an iodine flask, 20 cc of distilled water, 5 cc concentrated HCl and 5 cc of $10 \% \mathrm{KI}$ solution is added. The liberated iodine is titrated against $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using starch as an indicator. The burette reading is noted as ' \mathbf{P} ' cc.

B. Main titration:

The given solution of phenol diluted using distilled water up to the mark in a 100 cc volumetric flask. Pipette out 10 cc of this diluted solution is taken in an iodine flask. 20 cc of distilled water, 3 cc of conc. HCl is added. Add 10 cc of brominating mixture. The reaction flask is stopperd / corked. The reaction flask allowed standing for 10 minutes in the dark. Then 3 cc of 10% KI solution is added. The
liberated iodine is titrated against $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using starch as an indicator. The burette reading is noted as ' \mathbf{Q} ' cc.

Observations:

A. Blank Titration:

Solution taken in the burette $\quad: 0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask
: 10 cc brominating mixture +20 cc of water 3 cc $\mathrm{HCl}+3 \mathrm{cc}$ of 10% KI

Indicator used
: Starch solution
Colour change $\quad:$ Pale yellow \rightarrow Blue \rightarrow Colourless

Trial No.	Burette readings in cc		Volume of $\mathbf{N a}_{2} \mathbf{S}_{2} \mathrm{O}_{3}$ added $(\mathbf{B}-\mathbf{A})$ cc	Concordant burette reading $=\mathbf{P} \mathbf{c c}$
		Final (B)		
2.				
3.				

Main titration.

Solution taken in the burette $\quad: 0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask : 10 cc phenol solution +20 cc of distilled water $+3 \mathrm{cc} \mathrm{HCl}+10$
cc brominating solution +3 cc of 10% KI
Indicator used : Starch solution
Colour change $:$ Pale yellow \rightarrow Blue \rightarrow Colourless

Trial No.	Burette readings in cc		Volume of $\mathbf{N a}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added $(B-A)$	Concordant burette reading $=\mathrm{Q}$ cc
	Initial (A)	Final (B)		
1.				
2.				

Calculation:

From the equation:
1 mole of phenol $=3$ moles of $\mathrm{Br}_{2}=6$ equivalents of bromine $=6$ moles of iodine $=60,000 \mathrm{cc}$ of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
$\therefore 1 \mathrm{cc}$ of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\underline{94}=0.001567 \mathrm{~g}$ of phenol.
60,000
Where, the molecular mass of phenol $=94$
a) $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for 25 cc of brominating mixture in the

Blank titration $=\mathbf{P}=\ldots . . \mathrm{cc}$
b) $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for the excess of brominating mixture added in the

$$
\text { Main titration }=\mathbf{Q}=\ldots \ldots . . c c
$$

c) The brominating solution in terms of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution= $\mathbf{P}-\mathbf{Q}=\mathbf{S}=\ldots \ldots$ cc
d) Volume of phenol in the 10 cc of diluted phenol solution $=\mathbf{S} \times 0.001567 \mathrm{~g}$
e) Amount of phenol present in the given solution $=10 \times \mathbf{S} \times 0.001567 \mathrm{~g}=\mathbf{T} \mathrm{g} / 100 \mathrm{cc}$

Result: The amount of phenol present in 1000 cc of the given sample solution $=$

$$
\mathbf{T} \times 10=\ldots \ldots \ldots \mathrm{g} / \mathrm{dm}^{3}
$$

9. ESTIMATION OF ANILINE BY BROMINATION METHOD

Aim: To estimate volumetrically the amount of aniline in the given solution.
Chemicals: Anilne solution (provided in volumetric flask), $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, brominating mixture, 10% KI solution , starch solution, conc. HCl etc.,

Apparatus required: Burette (50 ml), Pipette (25 ml), two iodine flasks (250 ml) and one 250 ml conical flask.

Principle: On adding a known volume of brominating solution to the aniline solution, tribromo aniline is precipitated. The excess of bromine that liberates an equivalent amount of iodine on addition of potassium iodide is determined by titrating the reaction mixture with standard solution of sodium thiosulphate using starch as an indicator. Thus, knowing the amount of bromine solution consumed then the quantity of aniline in the given solution is calculated.

Procedure:

A. Blank titration:

Pipette out 10 cc of brominating mixture $\left(\mathrm{KBr}+\mathrm{KBrO}_{3}\right)$ is taken in an iodine flask, 20 cc of distilled water, 3 cc concentrated HCl and 3 cc of $10 \% \mathrm{KI}$ solution is added. The liberated iodine is titrated against $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using starch as an indicator. The burette reading is noted as ' \mathbf{P} ' cc.

B. Main titration:

The given solution of aniline diluted using distilled water up to the mark in a 100 cc volumetric flask. Pipette out 10 cc of this diluted solution is taken in an iodine flask. 20 cc of distilled water, 3 cc of conc. HCl is added. Add 10 cc of brominating solution. The reaction flask is stoppered / corked. The reaction flask is allowed to stand for 10 minutes in the dark.

Then 3 cc of $10 \% \mathrm{KI}$ solution is added. The liberated iodine is titrated against $0.1 \mathrm{~N} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}$ using starch as an indicator. The burette reading is noted as ' \mathbf{Q} ' cc.

Observation:

A. Blank Titration:

Solution taken in the burette $\quad: 0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask : 10 cc brominating mixture +20 cc of water $5 \mathrm{cc} \mathrm{HCl}+3 \mathrm{cc}$ of 10 \% KI

Indicator used
: Starch solution
Colour change
$:$ Pale yellow \rightarrow Blue \rightarrow Colourless

Trial No.	Burette readings in cc		Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added ($\mathbf{B}-\mathbf{A}$) cc	Concordant burette reading$=\mathbf{P ~ c c}$
	Initial (A)	Final (B)		
1.				
2.				
3.				

B. Main titration:

Solution taken in the burette $\quad: 0.1 \mathrm{~N} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
Solution taken in the conical flask : 10 cc aniline solution +20 cc of distilled water $+3 \mathrm{cc} \mathrm{HCl}+10$
cc brominating mixture +3 cc of $10 \% \mathrm{KI}$
Indicator used : Starch solution
Colour change $:$ Pale yellow \rightarrow Blue \rightarrow Colourless

$\begin{aligned} & \text { Trial } \\ & \text { No. } \end{aligned}$	Burette readings in cc		Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added (B-A) cc	Concordant burette reading = \mathbf{Q} cc
	Initial (A)	Final (B)		
1.				
2.				

Calculation:

From the above equation,
1 mole of phenol $=3$ moles of $\mathrm{Br}_{2}=6$ equivalents of bromine $=6$ moles of iodine $=60,000 \mathrm{cc}$ of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
$\therefore 1 \mathrm{cc}$ of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=93 / 60,000=0.00155 \mathrm{~g}$ of aniline
Where, the molecular mass of aniline is 93 .
a) Volume of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for 25 cc of brominating mixture

$$
\text { Blank titration }=\mathbf{P}=\ldots . . . \mathrm{cc}
$$

b) Volume of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for the un-reacted brominating mixture

$$
\text { Main titration }=\mathbf{Q}=\ldots \ldots . \mathrm{cc}
$$

c) The brominating mixture used interms of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $=\mathbf{P}-\mathbf{Q}=\mathbf{R}=$ \qquad cc
d) Volume of aniline in the 10 cc of diluted aniline solution $=\mathbf{R} \times 0.00155 \mathrm{~g}$
e) Amount of aniline present in the given solution

$$
\begin{aligned}
& =10 \times \mathbf{R} \times 0.00155 \mathrm{~g} \\
& =\mathbf{S}=\ldots \ldots \ldots . \mathrm{g} / 250 \mathrm{cc}
\end{aligned}
$$

Result: The amount of aniline present in 1000 cc of the given sample solution $=\mathbf{S} \times 10$ $=\ldots \ldots \ldots \mathrm{g} / \mathrm{dm}^{3}$

10. ESTIMATION OF ACETAMIDE BY HYDROLYSIS METHOD

Aim: To estimate the amount of acetamide present in the given solution by hydrolysis method.
Chemicals Required: 1 N KOH solution, amide solution (Given), $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and phenolphthalein indicator.

Apparatus Required: Measuring flask, R.B. flask, air condenser, Burette, pipette etc.

Principle:

The acetamide is hydrolysed completely by boiling it with an excess of KOH (Approx. 1 N) solution. Ammonia is expelled by boiling and excess of alkali is added which is determined by titrating the hydrolysed mixture against standard solution of sulphuric acid. By knowing the amount of alkali consumed for hydrolysis, the quantity of acetamide in the given solution can be calculated.

$$
\begin{array}{ll}
\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{KOH} \longrightarrow & \mathrm{CH}_{3} \mathrm{COOK}+\mathrm{NH}_{3} \uparrow \\
\text { Acetamide } & \text { Potassium actate } \\
& \\
\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
\text { Potassium acetate } & \text { Acetic acid } \tag{3}\\
\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow & \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Procedure:

A. Blank Titration:

25 cc of alcoholic KOH solution is taken (using pipette) in a 250 cc measuring flask, is diluted up- to the mark using distilled water. After shaking the diluted solution a homogeneous solution is obtained. 25 cc of this diluted solution pipette out into a 250 cc conical flask and 2-3 drops of phenolphthalein indicator is added. This is titrated against standard solution of $0.1 \mathrm{~N}_{2} \mathrm{SO}_{4}$ till the pink colour disappears. The burette reading is noted as ' \mathbf{P} ' cc.

B. Main Titration:

Given acetamide solution is taken in an iodine flask, 25 cc (using a pipette) of alcoholic KOH solution and 1-2 pieces of boiling chips is added. It is refluxed on sand bath for 90 minutes by connecting the air condenser. After the hydrolysis is over, the reaction mixture is cooled then washed the
condenser with a little amount of distilled water and collected the washings in to the flask. The condenser was disconnected. The flask is heated for another 10-15 minutes (Till there is no evolution of ammonia which is confirmed by testing with a red litmus paper) using a funnel over the mouth of the flask and cooled. The contents transferred into a 250 cc measuring flask. The iodine flask is washed 2-3 times using distilled water and the washings transferred into the measuring flask then diluted up to the mark using distilled water. then shake well to get uniform solution.

Pipette out 25 cc of this diluted solution in a 250 cc conical flask and add 2-3 drops of phenolphthalein as an indicator then titrate against standard solution of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ till the pink colour disappears. Note down the burette as ' \mathbf{Q} ' cc.

Observation:

A. Blank Titration:

Solution taken in the burette
: $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution

Solution taken in the conical flask

Indicator used
Colour change

Trial No.	Burette readings in cc		Volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added $(\mathrm{B}-\mathrm{A})$ cc	Concordant burette reading = P cc
Initial (A)	Final (B)			
1.				
2.				
3.				

Main titration:

Solution taken in the burette
: $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution

Solution taken in the conical flask
: 25 cc diluted Acetamide solution
Indicator used : Phenolphthalein
Colour change
: Pink \rightarrow Colourless

Trial No.	Burette readings in cc		Volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added $(B-A) ~ c c ~$	Concordant burette reading = Q cc
	Initial (A)	Final (B)	(B)	
1.				
2.				
3.				

CALCULATION:

From the above equation,
1 mole of acetamide $($ Mol. mass $=59 g) \equiv 1$ mole of $\mathrm{KOH} \equiv 1000 \mathrm{cc}$ of 1 NKOH .

$$
\therefore 1 \mathrm{cc} \text { of } 0.1 \mathrm{~N} \mathrm{KOH}=59 / 10,000=0.0059 \mathrm{~g} \text { of acetamide }
$$

a) Volume of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ required for 25 cc of diluted KOH solution from the

$$
\text { Blank titration }=\mathbf{P}=
$$cc

b) Volume of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ required for the un-reacted KOH solution from the

Main titration $=\mathbf{Q}=$ \qquad .cc
c) Volume of the KOH solution used in terms of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution= $\mathbf{P}-\mathbf{Q}=\mathbf{R}=\ldots$ cc
d) Volume of acetamide in the 25 cc of diluted acetamide solution $=\mathbf{R} \times 0.0059 \mathrm{~g}$
(Since 1 cc of $0.1 \mathrm{~N} \mathrm{KOH} \equiv 1$ cc of $0.1 \mathrm{~N}_{2} \mathrm{SO}_{4} \equiv 0.0059 \mathrm{~g}$ of acetamide)
e) Amount of acetamide present in the given solution $=10 \times \mathbf{R} \times 0.0059 \mathrm{~g}$

$$
=\mathbf{S}=\ldots \mathrm{g} / 250 \mathrm{cc}
$$

Result: The amount of acetamide present in 1000 cc of the given sample solution $=\mathbf{S} \times 4$

$$
=\ldots \mathrm{g} / \mathrm{dm}^{3}
$$

11. ESTIMATION OF CARBOXYLIC ACID

AIM: To estimate the amount of carboxylic acid present in the given solution.
Chemicals: Oxalic acid, NaOH , carboxylic acid solution and phenolphthalein indicator. Apparatus:
Volumetric flask, conical flask, Beaker, glass rod, watch glass etc.

Principle:

Organic compounds which contained the carboxylic group that show appreciable acidity. Whether the group is aliphatic or aromatic, saturated or unsaturated, substituted or un-substituted, the properties of carboxylic group are essentially the same. As their name implies carboxylic acids are acidic. Therefore, these acids react with bases like NaOH and NaHCO_{3} to give metal carboxylate salts, $\mathrm{RCO}_{2}{ }^{-}$. The carboxylic acids with more than 6 carbons are only slightly soluble in water, but alkali metal salts of carboxylic acids are generally quite water soluble because they are ionic in nature.

In fact the determination of amountcarboxylic acids is achieved by titrating with the standard solution of a base. The strength of the NaOH is determined using standard solution of oxalic acid. Using the known strength of NaOH the amount of carboxylic acid is determined.
$\mathrm{RCOOH}+\mathrm{NaOH} \rightarrow \mathrm{RCOONa}+\mathrm{H}_{2} \mathrm{O}$
Insoluble in $\mathrm{H}_{2} \mathrm{O} \quad$ Soluble in $\mathrm{H}_{2} \mathrm{O}$

Procedure:

A. Preparation of standard 0.1 N oxalic acid solution:

Accurately weighed $(1.575 \mathrm{~g})$ oxalic acid is transferred to a beaker and is dissolved by adding distilled water. The solution is carefully transferred (along with washings) to a 250 cc volumetric flask and further diluted up to the mark using distilled water. It is shaken well to get a homogeneous solution.

B. Blank titration: Standardization of sodium hydroxide solution:

The burette is washed with water, rinsed with the given sodium hydroxide solution and filled with the same solution. The pipette and conical flask are rinsed with distilled water.

Exactly 25 cc of oxalic acid solution is pipette out into a 250 cc conical flask. Add 2-3 drops of phenolphthalein as an indicator. The solution is titrated against NaOH solution till the colour changes from colourless to pink. The burette reading is noted. The titration is repeated to get concordant values.

C. Main titration: Estimation of carboxylic acid

Make up the given carboxylic acid solution into 250 cc volumetric flask using distilled water and shake well to make the solution homogenous. Pipette out 25 cc of diluted solution in- to a clean 250 cc conical flask then add 2-3 drops of phenolphthalein as an indicator. Titrate the reaction mixture against standard NaOH solution till pink colour is obtained. Note down the burette reading. Repeat the titration for concordant reading.

Observation:

A. Preparation of $\mathbf{2 5 0} \mathbf{~ c c}$ of standard 0.1 N oxalic acid solution

The amount of oxalic acid required
Mass of empty watch glass
Mass of watch glass + oxalic acid
$=\mathrm{NEV} / 1000=0.1 \times 63 \times 250 / 1000=1.575 \mathrm{~g}$
: $\mathrm{m}_{1}=$ \qquad g

Mass of oxalic acid
: $\mathrm{m}_{2}=$........... g
$:\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)=$ \qquad
\therefore Normality of oxalic acid solution $\quad=\frac{\text { Mass of oxalic acid } \mathrm{x} 4}{\text { Eq.mass of oxalic acid }}$
$=\frac{(\mathrm{m} 2-\mathrm{m} 1) \times 4}{63}=$ \qquad . N

B. Blank Titration: Standardization of sodium hydroxide

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: NaOH solution
: 25 cc oxalic acid solution
: Phenolphthalein
: Colourless \rightarrow Pale pink

Trial No.	Burette readings in cc		Volume of NaOH added $(B-A) ~ c c ~$	Concordant burette reading $($ CBR $)$ cc
	Initial (A)	Final (B)		
2.				
3.				

Calculations: Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
\mathrm{N}_{1}=\text { Normality of } \mathrm{NaOH} & \mathrm{~V}_{1}=\text { Volume of } \mathrm{NaOH}(\mathrm{CBR}) \\
\mathrm{N}_{2}=\text { Normality of oxalic acid and } & \mathrm{V}_{2}=\text { Volume of oxalic acid }
\end{array}
$$

Normality of $\mathrm{NaOH}, \mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=$ \qquad N

C. Main Titration: Determination of the amount of carboxylic acid

Solution taken in the burette
Solution taken in the conical flask
Indicator used
Colour change at the end point
: NaOH solution
: 25 cc carboxylic acid solution
: Phenolphthalein
: Colourless \rightarrow Pale pink

Trial No.	Burette readings in cc		Volume of Initial (A)	Final (B)
	NaOH added $(\mathbf{B}-\mathbf{A}) \mathbf{c c}$	Concordant burette reading $(\mathbf{C B R}) \mathbf{c c}$		
1.				
2.				
3.				

Equation used $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{1}=$ Normality of carboxylic acid $\quad \mathrm{V}_{1}=$ Volume of carboxylic acid
$\mathrm{N}_{2}=$ Normality of $\mathrm{NaOH} \quad \mathrm{V}_{2}=$ Volume of NaOH
Therefore, Normality of carboxylic acid, $\mathrm{N}_{1}=\frac{\mathbf{N}_{2} \mathbf{V}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{1}}}=$ \qquad N

We know that equivalent mass of carboxylic acid $=60.0$
Amount of carboxylic acid present in dm^{3} of solution (\mathbf{X})
$=$ Normality of carboxylic acid x Eq. mass of carboxylic acid $=\mathbf{X} g=\ldots \mathrm{g} / 1000 \mathrm{cc}$
\therefore Amount of Carboxylic acid present in 250 cc of solution $\quad=\frac{\mathbf{X}}{4} \quad=\ldots \mathrm{g} / 250 \mathrm{cc}$
Result: The amount of carboxylic acid present in 1000 cc of the given sample solution

$$
=\ldots \mathrm{g} / \mathrm{dm}^{3}
$$

12. ESTIMATION OF ASPIRIN

Aim: To estimate the amount of Aspirin.

Appartus: Burette, Pipette, Conical flak, Measuring flask and conical flask etc.
Chemicals: $0.2 \mathrm{M} \mathrm{NaOH}, 0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, Phenolphthalein etc

Principle:

Aspirin is an acetylsalicylic acid, has pharmacological significance. This was first synthesized in 1893 by Felix Hofmann, a chemist for the German firm of Bayer. It is a weak acid that also undergoes slow hydrolysis; i.e., each aspirin molecule reacts with two hydroxide ions. A known amount of standard sodium hydroxide solution is used in excess to hydrolyse the known mass of aspirin. The unreacted sodium hydroxide which remains in the reaction mixture after hydrolysis is then titrated with standard acid. The amount of aspirin is calculated (from the equation) by knowing the amount of alkali consumed during the hydrolysis.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+2 \mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\text { Acetyl salicylic acid } \quad \text { Sodium acetate } \quad \text { Sodium salicylate }
$$

Procedure:

A. Blank Titration:

Pipette out 25 cc of 0.2 M NaOH solution into a conical flask and add 2-3 drops of phenolphthalein as an indicator then titrate against standard solution of 0.2 M HCl till the pink colour disappears (reverse titration). Note down the burette reading as ' \mathbf{P} ' cc.

B. Main Titration:

Take aspirin tablet / aspirin solution, 20 cc of ethanol and 20 cc of distilled water, into a 250 cc Erlenmeyer flask (Iodine flask). Add 25 cc (using a pipette) of 0.2 M NaOH solution to the reaction mixture and 1-2 pieces of boiling chips. Set the reaction mixture for the reflux (by connecting the air condenser) on a water bath for about 20 minutes, swirl the flask occasionally. After the hydrolysis is over disconnect the condenser, cool the reaction mixture to room temperature.

The reaction mixture is titrated against standard solution of 0.2 M HCl using phenolphthalein as an indicator till the pink colour disappears (reverse titration). Note down the burette reading as ' \mathbf{Q} ' cc .

Observations:

A. Blank Titration:

Solution taken in the burette $: 0.2 \mathrm{M}$ solution HCl
Solution taken in the conical flask $: 25 \mathrm{cc} \mathrm{NaOH}$ solution

Indicator used
Colour change
: Phenolphthalein
: Pink \rightarrow Colourless

Trial No.	Burette readings in cc		}{Initial (A) added (B - A)cc}	Final (B) burette reading b P cc
2.				
3.				

B. Main titration.

Solution taken in the burette
: 0.2 M HCl solution
Solution taken in the conical flask
Indicator used
Colour change
: Entire reaction mixture (after hydrolysis)
: Phenolphthalein
: Pink \rightarrow Colourless

Trial No.	Burette readings in cc		Volume of HCl	
	Initial (A)	Final (B)	Concordant boded (B - A)cc = Q cc reading	
1.				
2.				
3.				

Calculation:

a. Volume of 0.2 M HCl required for 25 cc of NaOH solution from the Blank titration $=\mathbf{P}=$cc

Volume of 0.2 M HCl required for the un-reacted NaOH solution from Main titration $=\mathbf{Q}=$cc
b. Volume of NaOH solution used in terms of 0.2 M HCl solution $=(\mathbf{P}-\mathbf{Q})=\mathbf{R} \mathrm{cc}$

We know from the reaction that,

$$
\begin{array}{ll}
2 \text { moles of } \mathrm{HCl} \equiv 2 \text { moles of } \mathrm{NaOH} & \equiv 1 \text { mole of } \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH} \text { (aspirin) } \\
\equiv & 180 \mathrm{~g} \text { aspirin } \\
& \text { Where, the mol. } \text { mass of aspirin }=180 \\
\therefore 1 \text { mole of } \mathrm{HCl} \equiv 1 \text { mole of } \mathrm{NaOH} \quad \equiv & 1 / 2 \text { mole of } \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}(\text { Aspirin }) \\
\equiv & 180 / 2 \mathrm{~g} \text { Aspirin }=90 \mathrm{~g} \text { Aspirin }
\end{array}
$$

$$
\begin{aligned}
& \therefore \quad 1000 \mathrm{cc} \text { of } 1 \mathrm{M} \mathrm{HCl} \equiv 90 \mathrm{~g} \text { Aspirin } \\
& \therefore \quad 1 \mathrm{cc} \text { of } 1 \mathrm{M} \mathrm{HCl} \equiv 0.090 \mathrm{~g} \text { Aspirin } \\
& \begin{aligned}
\therefore \quad \mathbf{R ~ c c ~ o f ~} \mathbf{Y} \mathrm{M} \mathrm{HCl} & \equiv 0.090 \times \mathbf{R} \times \mathbf{Y}=\mathbf{S}=\ldots . . \mathrm{g} \text { Aspirin } \\
& =\mathbf{S} \mathbf{X 1 0 0 0}=\boldsymbol{T} \text { mg Aspirin }
\end{aligned}
\end{aligned}
$$

$$
\text { Where } \boldsymbol{Y}=\text { Exact Molarity of } \mathrm{HCl} \text { used in the titration }
$$

\therefore The amount of Aspirin present per tablet $=\boldsymbol{T} /$ Number of tablets used in the experiment
=mg / Tablet

Result: The amount of aspirin present per tablet $=$ \qquad mg.
B.Sc II SEMESTER PRACTICAL EXAMINATION

SCHEME OF EVALUATION

SCHEME OF EVALUATION					
PREPARATION		ESTIMATION			
OF AN ORGANIC COMPOUND		OF AN ORGANIC COMPOUND			
Yield	16	Blank titra		08	
Nature of crystals	04	Main titrat		12	
Technique and presentation	04	Technique presentatio		05	
Purity and M.P	$04+02$	Calculation		05	
Journal	05	Journal		05	
Viva-voce	05	Viva-Voce		05	
TOTAL	40			40	
AWARD OF MARKS BASED ON ACCURACY					
Yield in \%	Max. Marks	Blank Titration (cc)	Max. Marks	Main Titration (cc)	Max. Marks
< 10\%	16	$< \pm 0.2$	08	± 0.2	12
11-15 \%	14	± 0.4	06	± 0.4	10
16-20 \%	12	± 0.6	04	± 0.6	08
21-25 \%	10	± 0.8	02	± 0.7	06
26-30 \%	08	> ± 0.8	ZERO	± 0.8	04
> 30%	ZERO			± 0.9	02
				> ± 0.9	ZERO

Note:

In case of determination of Carboxylic acid just to satisfy the guidelines of distribution of marks mentioned in scheme of evaluation; in this experiment the Standardization of sodium hydroxide solution shall be treated as Blank titration and then the marks should be awarded accordingly.

B.Sc III Semester
 EXPERIMENTS IN PHYSICAL CHEMISTRY

Total No of Hours/Week : 04 Hours Total No of Hours : 52 Hours				
			IA : 10 Ma	
Expt. No	Experiments			Page No.
1	Explanation regarding errors, types of errors, accuracy, precision, significant figures and standard deviation (students should write in the journal regarding the above).			85
2	Determination of the velocity constant and effect of concentration on velocity constant of second order reaction $\mathrm{KI}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(\mathrm{a}=\mathrm{b})$.			89
3	Determination of surface tension and parachor of benzene series or alcohol series.			91
4	Determination of viscosity of toluene and carbon tetrachloride by Ostwald's Viscometer method.			93
5	Determination of enthalpy of ionization of acetic acid by calorimetric method.			95
6	Determination of degree of dissociation of KCl by Landsberger's method. To study the effect of acid strength on hydrolysis of methyl acetate using HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$.			98
7				100
8	To study the adsorption of acetic acid on animal charcoal. Determination of surface tension and parachor of toluene, xylene and n-hexane and calculate the atomic parachor of Carbon and Hydrogen.			102
9				104
10	Determination of viscosity of binary liquid mixtures of Toluene \& carbon tetrachloride and to calculate the percentage composition of the unknown mixture.			106
11	Study of the distribution of benzoic acid between water and toluene.			108
12	Determination of heat of solution of KNO_{3} by solubility method.			110
Scheme of Marking:				
Proper Technique and Presentation $=03$				
Calculation (Calculation + Graph) $=09(5+4)$				
Viva voce		$=05$		
Journal		$=05$		
Total $=40$ Marks				
NB:	1. scientific calculators are not allowed.			
2. Use A4 size graph sheets.				

Expt.No.I: Explanation regarding errors, types of errors, accuracy, precision, significant figures and standard deviation

1. Errors, Accuracy, Precision, Significant figures and Standard deviation.

ERRORS: It is defined as the numerical difference between a measured value and the absolute or true value of an analytical determination. The absolute or true value of a quantity is however never known. All that we can use only an accepted value. The value for any quantity is 'accepted' when the uncertainty in this value is less than the uncertainty in some other quantity with which the given quantity is to be compared. It is very rare that two methods may yield identical accepted values.

The error in a measured quantity is represented either as absolute error or relative error.
Absolute error (E): The absolute error in a measurement is expressed as:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{x}_{\mathrm{i}}-\mathrm{X}_{\mathrm{t}} \quad \text { where, } \mathrm{x}_{\mathrm{i}} \text { is the measured value and } \mathrm{x}_{\mathrm{t}} \text { is the true or accepted value } \\
& \text { for a given measurement. }
\end{aligned}
$$

Relative error ($\mathbf{E}_{\mathbf{r}}$): The relative error in a measurement is expressed as:

$$
E \frac{x_{i}-x_{t}}{x_{t}}
$$

where, x_{i} is the measured value and x_{t} is the true or accepted value for a given measurement.
Relative error is generally expressed as percentage of error.
Types of errors: $\quad E_{r} \frac{x_{i}-X_{t}}{x_{t}} X$
A) Systematic error or Determinant error: These are errors, which can be avoided, or whose magnitude can be determined. Systematic errors are three types, they are:
i) Operational and Personal error, ii) Instrumental and Reagent error and iii) Method error.
i) Operational and personal error:_The errors are mostly physical in nature and occur when sound analytical technique is not followed.
Example: a) Incomplete drying of analytical sample before weighing.
b) Mechanical loss of materials during sample dissolution from effervesces or from bumping.
c) Incorrect technique involving transfer of solution.

Personal errors may arise from the inability of an individual to make certain observations accurately:
a) Some persons are unable to judge colour changes sharply in visual titrations.
b) The personal decisions include the estimation of a value between two scale divisions of a burette or a meter.
ii) Instrumental and Reagent error:-These errors arise from the faulty construction of balances, the use of uncelebrated or improperly calibrated weights, graduated glassware and other instruments. The
attack of reagents upon glassware, porcelain, etc., resulting in the introduction of foreign materials and the use of reagents containing impurities.
iii) Method errors: These are the most serious errors because often they can be difficult to detect.
Examples:- a) A pH meter that has been wrongly standardized,
b) Faulty detector response in chromatographic and spectrographic methods,
c) Errors in classical analysis include solubility of precipitates and the decomposition or volatilization on ignition of weighing forms in gravimetry,
d) Errors may arise in titrimetry if there are differences between the observed end point and the stoichiometric equivalence point of a reaction.
B) Random error or Indeterminate error:- Indeterminate or random errors arises from uncertainties which are inevitably associated with every physical or chemical measurements. These are random or accidental errors whose sources, though many, cannot be positively identified.

Example:- In gravimetric analysis of aluminium, aluminium oxide shows high weight due to the presence of water vapour and can be easily controlled, whereas the analyst has no control over the erratic or random type of errors.

ACCURACY: It is the agreement of a particular value to the true value or most probable value of the result.

PRECISION:- It refers to the closeness of various measurements for the same quantity.

* Accuracy expresses the correctness of a measurement.
* Precision expresses the reproducibility of a measurement.

Precision always accompanies accuracy, but a high degree of precision does not imply accuracy.
Example:- If the true value for a result is 2.00 g and a student ' A ' takes two measurements and reports the results as 1.95 g and 1.93 g . These values are precise as they are close to each other but are not accurate.

Another student repeats the experiment and obtains 1.94 g and 2.05 g as the results for two measurements. These observations are neither precise nor accurate.

When a third student repeats these measurements and reports 2.01 g and 1.99 g as the results. These values are both precise and accurate.

SIGNIFICANT FIGURES:- Every experiment has some amount of uncertainty associated with it. However one would always like the results to be precise and accurate. The significant figures in a numerical expression are defined as "all those digits whose values are known with certainty with one additional digit whose value is uncertain". The uncertainty in the experimental or the calculated values is indicated by mentioning the number of significant figures.

Examples:1) If the mass of a substance, determined by using a balance which is capable of measuring accurately to the nearest milligram is reported as $\mathbf{2 . 0 3 7 6 5}$ gram, then only the first four figures are meaningful. In actual measurement, the last digit known with certainty is 7 . The digit 6 is uncertain and indicates only that the mass is more than $\mathbf{2} .037$ but less than $\mathbf{2 . 0 3 8}$. The last digit 5 is meaningless and superfluous. Thus by definition $\mathbf{2 . 0 3 7 6 5}$ has only five significant figures, of which four figures are certain and one figure is uncertain.
2) The position of decimal is of no relevance in determining the number of significant. For example, $0.2341,2.341,23.41,234.1 \& 2341$ all have four significant figures. A zero is not a significant figure when used for locating a decimal but becomes significant when used at the end of the expression. Thus $\mathbf{0 . 0 3 0 4}$ has three significant figures where as the expression $\mathbf{0 . 0 3 0 4 0}$ has four Significant figures.
3) In the quantities 1.2680 g and 1.0062 g the zero is significant, but in the quantity 0.0025 kg the zero is not significant figures, they serve only to locate the decimal point and can be omitted by proper choice of units, i.e. 2.5 g . the first two numbers contain five significant figures, but 0.0025 contains only two significant figures.

Rounding Off the numerical expression

When the answer to a calculation contains too many significant figures, it must be rounded off. There are 10 digits that can occur in the last decimal place in a calculation. One way of rounding off involves underestimating the answer for five of these digits ($0,1,2,3$, and 4) and overestimating the answer for the other five ($5,6,7,8$, and 9).

This approach to rounding off is summarized as follows:
i) If the digit is smaller than 5 , drop this digit and leave the remaining number unchanged. Thus, 1.684 becomes 1.68 .
ii) If the digit is 5 or larger, drop this digit and add 1 to the preceding digit. Thus, 1.247 becomes 1.25.

iii) Rounding off the following numbers:

a) 75.8437 for three significant figures: $75.8437 \longrightarrow 75.8$
b) 9.857862 for four significant figures: $9.857862 \longrightarrow 9.858$
c) 0.236578 for five significant figures: $0.236578 \longrightarrow 0.23658$

STANDARD DEVIATION: The term standard deviation is commonly used in statistics as a measure of precision. This quantity is obtained by the summation of the squares of the individual deviations from the mean, dividing the sum by $n-1$, where n is the number of measurements and then taking the square root.

If we consider a series of n observations arranged in ascending order of magnitude,

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . ., \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}
$$

the arithmetic mean is given by

$$
\bar{x}=\frac{x_{1}, x_{2}, x_{3}, \ldots ., x_{n-1}, x_{n}}{n}
$$

The spread of the values is measured most efficiently by the standard deviations, defined by:

$$
s=\sqrt{\frac{\left(\mathrm{x}_{1}-\overline{\mathrm{x}}\right)^{2}+\left(\mathrm{x}_{2}-\overline{\mathrm{x}}\right)^{2}+\ldots . .+\left(\mathrm{x}_{\mathrm{n}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-}}
$$

In this equation the denominator is $(\mathrm{n}-1)$ rather than n when the number of values is small.
The equation may also be written as:

$$
s=\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}-}}
$$

Expt.No. 2

SECOND ORDER REACTION

Aim: To determine the velocity constant and study the effect of concentration on velocity constant of second order reaction: $\mathrm{KI}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, when $\mathrm{a}=\mathrm{b}$.
Chemicals: $0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, 0.05 \mathrm{~N}$ KI, $0.002 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, starch etc.,
Apparatus: Burette, pipette, reagent bottles, conical flask, stop watch etc.,
Theory: When KI is added to $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, the iodine is liberated. Progress of the reaction is studied by titrating a known volume of reaction mixture against std. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution at a regular interval. The reaction is proceeding through a second order; therefore its velocity constant, k is calculated by using the integrated rate equation; $\quad \boldsymbol{k}=\frac{1 \quad \mathrm{x}}{\mathrm{t} \mathrm{a}(\mathrm{a}-\mathrm{x})} \quad$ When $\mathrm{a}=\mathrm{b}$

Where ' a ' and ' b ' are initial concentration of KI and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ respectively
' t ' is time in minute,
' x ' is concentration of KI and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ reacted at time ' t '.
Velocity constant ' k ' is independent on concentration of reactants at a given temperature. It can be proved by studying the reaction at two different concentrations of reactants.

Reactions: $2 \mathrm{KI}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$

$$
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \quad 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \text { (Sodium tetrathionate) }
$$

Procedure: Set-I: a=b: 50 cc of $0.05 \mathrm{~N} \mathrm{KI}+50 \mathrm{cc}$ of $0.05 \mathrm{~N} \mathrm{~K} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
1 Pipette out 50 cc of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and 50 cc of KI in two separate clean and dry conical flasks. Stopper both the flasks and keep them in water bath at room temperature.

2 When the content attains room temperature, mix KI to $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ solution and immediately start the stopwatch. Cork the flask tightly and keep it in a water bath.

3 At $5^{\text {th }}$ minute, pipette out 10 cc of the reaction mixture into a conical flask containing few pieces of ice cubes and titrate rapidly the liberated iodine against $0.002 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using starch indicator. Record the burette reading when the colour changes from blue to colour less.

4 Repeat the same titration for $10,15,20,25$ and 30 minutes.
5 Calculate ' a ' in terms of volume, then calculate $1 /(a-x)$ and record up to $4^{\text {th }}$ decimal.
6 Calculate the second order velocity constant, ' k ' using a suitable equation.
7 Plot a graph of $1 /(a-x)$ against time, which gives a straight line. Slope of the straight line is ' \boldsymbol{k} '.
8 To study the effect of concentration on velocity constant, repeat the entire experiment with the following concentrations of KI and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.

Set -II : $\mathbf{2 5} \mathbf{c c} 0.05 \mathrm{~N}$ KI $+\mathbf{2 5}$ cc dist. water \& $25 \mathrm{cc} 0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathbf{2 5} \mathbf{~ c c}$ dist. water.

* Calculate ' \boldsymbol{k} ' value and compare this with the value of ' \boldsymbol{k} ' for set-I.

Note: At a constant temperature, velocity constant k is independent upon concentration of reactants provided other conditions are constant.

Observations:

Time in minute	Titre readings ' x ' in cc	$\mathrm{a}-\mathrm{x}$	$1 / \mathrm{a}-\mathrm{x}$	$\mathrm{k}=\frac{1 \mathrm{x}}{\mathrm{t} a(\mathrm{a}-\mathrm{x})} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
5				
10				
15				
20				
25				
30				

Calculations:

1. Calculation of ' a ' in terms of volume.

Set-I: When 50 cc of 0.05 N KI and $50 \mathrm{cc} 0.05 \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ solutions are mixed, the operating normality of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ or KI, in the mixture becomes $0.05 / 2=0.025$.

When 10 cc of the reaction mixture is taken and titrated against $0.002 \mathrm{~N} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}$ then,
From $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$ equation
$10 \times 0.025=\mathrm{V} \times 0.002$
$\mathrm{V}=\frac{10 \times 0.025}{0.002}=125 \mathrm{cc}$, Hence, $\mathrm{a}=125 \mathrm{cc}$
Set-II: $25 \mathrm{cc} 0.05 \mathrm{~N} \mathrm{KI}+25 \mathrm{cc}$ dist. water \& $25 \mathrm{cc} 0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+25 \mathrm{cc}$ dist. water.
In this case the operating normality of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ or KI , in the reaction mixture becomes $=0.0125$.
$\mathrm{V}=\frac{10 \times 0.0125}{0.002}=62.5 \mathrm{cc}$, Hence, $\mathrm{a}=62.5 \mathrm{cc}$
2. Calculation of velocity constant $(\boldsymbol{k}): \quad \boldsymbol{k}=\frac{1 \mathrm{x}}{\mathrm{ta} \mathrm{a}(\mathrm{a}-\mathrm{x})} \quad \mathrm{dm}^{3} \mathrm{~mol}^{-1} \min ^{-1}$

Nature of the graph:

Slope =

Results: i) Value of \boldsymbol{k} for set I by formula method $=., \ldots . . \&$ graphical method $=\ldots \ldots . \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
ii) Value of \boldsymbol{k} for set II by formula method $=\ldots \&$ graphical method $=\ldots \ldots \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$

Conclusion: k for both the sets i.e., for two different concentrations are found to be same. Hence, velocity constant of a reaction is independent on concentration

Expt.No. 3

SURFACE TENSION

Aim: Determination of Surface tension of liquids benzene, toluene and o-xylene, by drop number method and calculate the Parachor of these liquid series.

Chemicals: Liquids: A (Benzene), B (Toluene) and C (o-xylene).
Apparatus: Trauts Stalagmometer with pinchcock, beaker, etc.,
Theory: Surface tension is one of the physical properties of the liquid. It is defined as the force in dynes acting on a surface at right angles to any line of unit length. This can be determined by drop number method using Stalagmometer. The surface tension can be calculated according to the following expression:

$$
\gamma_{L}=\frac{\mathrm{n}_{\mathrm{w}} \times d_{\mathrm{L}}}{\mathrm{n}_{\mathrm{L}} \times d_{\mathrm{w}}} \times \gamma_{\mathrm{w}} \quad \begin{aligned}
& \text { Where } \gamma_{\mathrm{w}}=\text { surface tension of water (72 dyne/cm) } \\
& \\
& \gamma_{\mathrm{L}}=\text { surface tension of liquid } \\
& \\
& \\
& n_{w}=\text { no. drops of water, } n_{L}=\text { no.of drops for liquid, } \\
& \\
& d_{w}=\text { density of water, } \mathrm{d}_{\mathrm{L}}=\text { density of liquid. }
\end{aligned}
$$

The magnitude of surface tension is used to calculate the parachor of liquid series, which are additive and constitutive properties. The parachor is calculated using the following equation.

$$
\mathrm{P}=\frac{\mathrm{M} \gamma^{1 / 4}}{\mathrm{~d}} \begin{gathered}
\text { Where, } \mathrm{P}=\text { parachor, } \mathrm{d}=\text { density } \\
\gamma=\text { surface tension of liquid } \& \mathrm{M}=\mathrm{Mol} . \text { Wt. of liquid. }
\end{gathered}
$$

When the parachor are calculated for the liquids of given homologous series, parachor values of difference in the atoms / group can be calculated.

Procedure:

1. Clean the Stalagmometer by ether / acetone. Dry it thoroughly by blowing hot air from rubber air blower and attach a clean and dry rubber with a screw clip in the middle to the upper end of Stalagmometer.
2. Clamp the apparatus exactly in a vertical position, lower end should be slightly inside the edge of the beaker to avoid disturbance while falling the drops by air.
3. Loosen the screw clip and suck the liquid taken in a small beaker, so that it is well above the upper round mark (care must taken to see the liquid does not enter the rubber tube). Close the tubes with the screw clips.
4. Adjust the flow of liquid using the screw clip, so that the number of drops falling from the flat end is between 20-25 drops per minute. Do not disturb this adjustment.
5. Suck the liquid again little above the upper mark and count the number of drops when the liquid flows from the upper round mark to the lower mark.
6. Repeat the same procedure for at least three times and calculate the average number of drops for the liquid.
7. Rinse the stalagmometer with ether / acetone and blow the air to dry before using for new liquid.
8. Take similar readings for other liquids under study and finally for distilled water.
9. Calculate the surface tension and parachor of each liquid by using the suitable formula and finally the parachor of CH_{2}.

Observations:-Tabulation

Liquids	No. of drops of liquids	Mean(n)	Density g / cc	Surface tension(dyne/cm)	Molar. mass	Parachor (P)
Benzene (A)	i ii iii		0.8784		78	$\mathbf{P}_{\text {A }}=$
Toluene (B)	i ii iii		0.8660		92	$\mathrm{P}_{\mathrm{B}}=$
Xylene (C)	i ii iii		0.8811		106	$\mathbf{P C}_{C}=$
Water	i ii iii		1.00		18	

Calculation :

1) Surface tension of liquid : $\quad \gamma_{L}=\frac{n_{w} x d_{L}}{n_{L} \times d_{w}} \times \gamma_{w}$
2) Calculation of Parachor: $\quad P=\frac{M \gamma^{1 / 4}}{d}$
3) Parachor of $-\mathrm{CH}_{2}: \quad \mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{C}}-\mathrm{P}_{\mathrm{B}}$

Results:

Surface Tension of (dyne/cm)	Benzene	Toluene	Xylene
Parachor of $-\mathrm{CH}_{2}:$			

Note: 1. Theoretical value of Parachor for $\mathrm{CH}_{2}: 39$
2. Alcohol series like, n-propanol, n - butanol, n - pentanol can also be used to calculate the Parachor of CH_{2}.

Aim: To determine the coefficient of viscosity of toluene and carbon tetrachloride by drop number method using Ostwald's Viscometer.

Chemicals: Pure toluene and carbon tetrachloride.
Apparatus: Ostwald's Viscometer, beaker, specific gravity bottle, weight box, etc.,
Theory: Viscosity is a resistance exerted by a liquid against the displacement of its own molecules. It is expressed in terms of coefficient of viscosity (η). It is defined as 'the force acting on unit area to maintain unit difference of velocity between two parallel layers of liquid 1 cm apart'. It can be calculated using Poiseuille's equation when η of other liquid is known.

$$
\eta_{\mathrm{L}}=\frac{\eta_{\mathrm{w}} \times \mathrm{t}_{\mathrm{L}} \mathrm{~d}_{\mathrm{L}}}{\mathrm{t}_{\mathrm{w}} \mathrm{~d}_{\mathrm{w}}}-\cdots--
$$

Where ' t_{L} ' is time of flow of liquid,
' t_{w} ' is time of flow of water
' d_{L} ' is density of liquid \& ' d_{w} ' is density of water
Experimentally, this can be determined with the help of Ostwald's viscometer by taking water as a reference liquid having ' η_{w} ', the viscosity coefficient 0.0089 poise.

Procedure:

1. Clean the Viscometer with acetone or ether and dry it thoroughly by blowing hot air from rubber air blower.
2. Clamp the Viscometer in a perfectly vertical position.
3. Attach a clean piece of rubber tube to the narrow arm of the viscometer.
4. Take 10 cc of the toluene with the help of a pipette into the wider arm of viscometer.
5. Suck the liquid by a rubber tube into the capillary side bulb up to a little above the upper mark. Allow the liquid to flow down through the capillary and at the same time record carefully the time required for the liquid to flow from upper mark to the lower mark on the capillary arm using stopwatch. Take at least three readings with each liquid and find the mean time in second (t_{L}).
6. Rinse the Viscometer with ether / acetone and blow the air to dry before using for new liquid.
7. Repeat the same procedure for carbon tetrachloride and lastly find the time of flow for water $\left(\mathrm{t}_{\mathrm{w}}\right)$.
8. Determine the density of toluene and carbon tetrachloride using a specific gravity bottle. Calculate the viscosity coefficient of each liquid using the suitable formula.

Observations

1) Determination of Densities:
1. Weight of empty specific gravity bottle
2. Weight of specific gravity bottle + toluene

$$
=w_{1} \quad=-----\mathrm{g}
$$

3. Weight of specific gravity bottle + carbon tetrachloride
$=\mathrm{w}_{2}=-----\mathrm{g}$
4. Weight of specific gravity bottle + water
$=W_{3}=-----\mathrm{g}$
5. Weight of toluene
$=W_{4} \quad=-----\mathrm{g}$
6. Weight of carbon tetrachloride
$=\mathrm{w}_{2}-\mathrm{w}_{1}=----\mathrm{g}$
7. Weight of water
$=\mathrm{w}_{3}-\mathrm{w}_{1}=----\mathrm{g}$

$$
=w_{4}-w_{1}=-----g
$$

Density of toluene $=\frac{\text { Weight of Toluene }}{\text { Weight of water }}=\frac{\left(w_{2}-w_{1}\right)}{\left(w_{4}-w_{1}\right)}=-----\mathrm{g} / \mathrm{cc}$

2) Determination of coefficient of viscosity ($\boldsymbol{\eta}$):

Liquids	Density (d) g / cc	Time of flow in second (t)	Mean(t)	$\boldsymbol{\eta}_{\mathbf{L}}=\frac{\boldsymbol{\eta}_{\mathbf{w}} \mathbf{x}}{\mathbf{t}_{\mathbf{w}} \mathbf{d}_{\mathbf{w}}}$---- poise
Toluene		i		
ii	iii			
Carbon		i		
tetrachloride		ii		
Water		iii		
		ii		$\boldsymbol{\eta}_{\mathbf{w}}=0.0089$

Calculation: Coefficient of viscosity

$$
\boldsymbol{\eta}_{\mathrm{L}}=\frac{\boldsymbol{\eta}_{\mathrm{w}} \mathbf{x}}{\mathbf{t}_{\mathbf{w}} \mathbf{d}_{\mathbf{w}}}-\cdots \text { poise }
$$

Results.

1) Coefficient of Viscosity of Toluene
2) Coefficient of Viscosity of Carbon tetrachloride

Note:

1. Theoretical Coefficient of Viscosity of Toluene
= ------poise
= ------poise
2. Theoretical Coefficient of Viscosity of Carbon tetrachloride $=0.0097$ poise

Expt.No. 5
 CALORIMETRY

Aim: To determine the enthalpy of ionization of acetic acid by calorimetric method.
Chemicals: Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 N NaOH soln., phenolphthalein indicator.
Apparatus: Thermos flask, $1 / 10^{\text {th } 0} \mathrm{C}$ thermometer, magnifying lens, measuring cylinder, burette, pipette etc.

Theory: When an acid is added to a base, heat is liberated. The quantity of heat liberated is expressed in terms of enthalpy of neutralization in kJ/eqv. It is defined as a change in enthalpy when one gram equivalent mass of acid is completely neutralized by one gram equivalent mass of base.

It is determined using calorimeter. In the determination of quantity of heat liberated in calorimeter, there will be a loss of heat due to the absorption of heat by the thermometer, wall of the calorimeter, stirrer, water etc. This loss of heat is called water equivalent of calorimeter. It can be measured by measuring the quantity of heat liberated ' Q ' for a given concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

However, for a weak acid or weak base, the enthalpy of neutralization is always less than that of neutralization of strong acid by strong base i.e., -57.32 kJ . This is because of the fact that these acids or bases do not undergo complete ionization in solution. Some of the heat is consumed in ionizing theses acids and bases. The heat required for ionizing the weak acid or the weak base is known as the enthalpy of ionization.

It can be calculated from the enthalpy of neutralization of weak acid from strong base. The neutralization of a weak acid is equal to the combination of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ to form unionized water and heat accompanying in the ionization of a weak acid. The neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ with NaOH can be represented as:
i) $\quad \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
: $\Delta \mathrm{H}_{1}=----\mathrm{kJ}$.
ii) $\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \quad \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad: \Delta \mathrm{H}_{2}=-57.32 \mathrm{~kJ}$ and ionization of weak acid
iii) $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \quad \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \quad: \Delta \mathrm{H}_{3}=---\mathrm{kJ}$

Where, $\Delta \mathrm{H}_{1}=$ enthalpy of neutralization of weak acid by strong base,
$\Delta \mathrm{H}_{2}=$ enthalpy of neutralization and $\Delta \mathrm{H}_{3}=$ enthalpy of ionization.
On adding Eqs. (ii) \& (iii), we get
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\Delta \mathrm{H}_{1}=-57.32+\Delta \mathrm{H}_{3}$ or $\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{1}+57.32 \quad=------\mathrm{kJ} \mathrm{mol}^{-1}$

Procedure

I) Determination of water equivalent of calorimeter: \boldsymbol{w} (Calorimetric constant).

1. Take 98 cc distilled water in a thermos flask provided with a stirrer and a thermometer and kept at a room temperature.
2. Start stopwatch and temperature is noted for every minute up to 5 minute $\left(\mathrm{T}_{1}{ }^{0} \mathrm{C}\right)$. Add 2 cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 5.5 minute, stirred well and note down the temperature at $6^{\text {th }} \mathrm{min}$.
3. Record the temperature continuously at the interval of one minute up to $15^{\text {th }}$ minute $\left(\mathrm{T}_{2}{ }^{0} \mathrm{C}\right)$.
4. Plot the graph of temperature v / s time and calculate the difference in temperature $\left(\Delta \mathrm{T}_{\mathrm{w}}\right)$.
5. Titrate the content of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution in the calorimeter by pipetting out 10 cc to 100 cc conical flask and titrate against 0.5 N NaOH solution using phenolphthalein indicator.
6. Calculate the normality and find out the amount of heat liberated (Q) by the calculated normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution using standard graph.
7. water equivalent of calorimeter (W) can be calculated using the formula: $W=\mathrm{Q} / \Delta \mathrm{T}_{\mathrm{w}}$

II) Determination of enthalpy of neutralization.

1. Take 50 cc of $0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ in a thermos flask and 50 cc of 0.5 N NaOH in another flask/beaker.
2. Note down the temperature of $\operatorname{acid}\left(\mathrm{T}_{3}{ }^{0} \mathrm{C}\right)$ for 05 minute as shown table 2 .
3. Now, note down the temperature of base $\left(\mathrm{T}_{4}{ }^{0} \mathrm{C}\right)$ separately up to 5 minutes with slow stirring and mix the base to the acid in the thermos flask at 5.5 minutes.
4. Note the temperature at $6^{\text {th }}$ minute and continue to record the temperature for every minute with stirring up to $15^{\text {th }}$ minute $\left(\mathrm{T}_{5}{ }^{0} \mathrm{C}\right)$.
5. Plot the graph of temperature v / s time and calculate $\Delta \mathrm{T}_{\mathrm{N}}$.

Observations

Table-1: Determination of water equivalent of calorimeter or Calorimetric constant (\boldsymbol{W}).

Time (min)	1	2	3	4	5	5.5	6	7	8	9	10	11	12	13	14	15
Temp	$\longleftarrow \mathrm{T}_{1}$ (water) \longrightarrow					Mixing	$\longleftarrow \mathrm{T}_{2}$ (Solution) \longrightarrow									
$\left({ }^{0} \mathrm{C}\right)$						-----										

Determination of normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution:

10 cc of the above $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is pipette out in a conical flask and titrated against 0.5 N NaOH using phenolphthalein indicator.

$$
\begin{aligned}
& \left(\mathrm{N}_{1} \mathrm{~V}_{1}\right)_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\left(\mathrm{N}_{2} \mathrm{~V}_{2}\right)_{\mathrm{NaOH}} \\
& \quad \mathrm{~N}_{1}=\frac{0.5 \times \mathrm{V}_{2}}{10}=-\cdots---\mathrm{N}
\end{aligned}
$$

Find out the ' Q ' from the standard graph for corresponding normality
Calculations of water equivalent of calorimeter

$$
\begin{aligned}
& =----\mathrm{kJ} . \\
& =\mathrm{Q} / \Delta \mathrm{T}_{\mathrm{w}}=-----\mathrm{k} \mathrm{~J} /{ }^{0} \mathrm{C} .
\end{aligned}
$$

2) Table-2: Determination of enthalpy of neutralization:-
$50 \mathrm{cc} 0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+50 \mathrm{cc} 0.5 \mathrm{~N} \mathrm{NaOH}$ (mix at 5.5 min .)

Time (min)	1	2	3	4	5	5.5	6	7	8	9	10	11	12	13	14	15
$\mathrm{Temp}\left({ }^{0} \mathrm{C}\right)$	$\longleftarrow \mathrm{T}_{3} \& \mathrm{~T}_{4} \longrightarrow$					mix	T5 (Solution)									
Acid (T_{3})																
Base (T_{4})																

Determination of $\Delta \mathbf{T}_{\mathbf{w}} \boldsymbol{\&} \Delta \mathbf{T}_{\mathbf{N}}$ from the plot of temperature against time,
Nature of the graph as shown below.

Graph-1.Determination of

Graph-2.Determination of

$\begin{array}{l}\text { Enthalpy of neutralizatio } n \\ \text { of } \mathrm{CH}_{3} \mathrm{COOH}\left(\Delta \mathrm{H}_{1}\right) \text { : }\end{array} \quad=-\left[\frac{1000 \times W \times \Delta \mathrm{T}_{\mathrm{N}}}{(\text { Normality x Volume })_{\text {acid or base }}}\right]$

$$
=-\frac{1000 \times W \times \Delta \mathrm{T}_{\mathrm{N}}}{0.5 \times 50}
$$

= ----- kJ

Enthalpy of neutralization $=-57.32+$ Enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}:\left(\Delta \mathrm{H}_{1}\right) \quad$ of $\mathrm{CH}_{3} \mathrm{COOH}:\left(\Delta \mathrm{H}_{3}\right)$

$$
\begin{aligned}
\Delta \mathrm{H}_{1} & =-57.32+\Delta \mathrm{H}_{3} \\
\Delta \mathrm{H}_{3} & =\Delta \mathrm{H}_{1}+57.32 \\
& =----\mathrm{kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Result: Enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}=$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
Note: 1. Theoretical value of Enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}=-55.43 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. Theoretical value of Enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$

$$
=+1.89-\mathrm{kJ} \mathrm{~mol}^{-1}
$$

Expt.No. 6

EBULLIOSCOPY
Aim: To determine the degree of dissociation of KCl by Landsberger's method.
Chemical: Solid KCl.
Apparatus: Landsberger's apparatus, thermometer $\left(1 / 10^{\text {th }}{ }^{\circ} \mathrm{C}\right)$, steam generator, etc.
Theory: When a soluble substance is added to a solvent, its boiling point increases. It is one of the colligative properties. Hence, increase in boiling point is directly proportional to its concentration. This elevation of boiling point (ΔT) is related to its molecular mass (M) as:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{E}}=\frac{1000 \times k_{b} \times \mathrm{w}}{\mathrm{~W} \Delta T} \quad \text { Where, } \mathrm{M}_{\mathrm{E}} & =\text { Mol. wt. of solute } \\
\mathrm{W} & =\text { weight of solute } \\
\mathrm{W} & =\text { weight of solution = volume of solution } \\
\Delta T & =\text { rise in boiling point. }
\end{aligned}
$$

If the solute is an electrolyte, its molecular mass is determined as above. It will not be the same as its molecular mass, but it may be lower than its molecular mass. It can be equated with the following relation.

$$
\quad \begin{aligned}
& \text { Where, } \alpha \text { is degree of dissociation, } \\
& \mathrm{M}_{\mathrm{T}} \text { is theoretical molecular mass of } \mathrm{KCl}(74.5)
\end{aligned}
$$

Procedure:

1. Pipette out 15 cc of water in a graduated tube of Landsberger's apparatus and connect it to the steam generator.
2. Pass the steam into the graduated tube of Landsberger's apparatus till the water drops come out of the outer jacket regularly and temperature remains constant. Now, disconnect the graduated tube from the generator. Note down the temperature immediately. This gives the boiling point of water T_{w}. Repeat the determination of B.P. of water for another two times with fresh water till to get concordant B.P.
3. Weigh exactly 0.5 g KCl and dissolve in 15 cc of water in a beaker. Then transfer the solution into a clean graduated tube. Pass the steam and find the boiling point of solution as above and record it as T_{s}.
4. Take out the graduated tube, cool under tap water to attain room temperature and note down the volume of solution W.
5. Repeat the same procedure with 1.0 and 1.5 g of KCl in 15 cc of water separately and note down their respective boiling points and volumes.
6. Calculate the molecular weight of the solute using a suitable formula.

Observations:

Boiling point of water, $\mathrm{T}_{1}=----------, \mathrm{T}_{2} \ldots \ldots . . \& \mathrm{~T}_{3} \ldots \ldots \ldots .{ }^{0} \mathrm{C}$
Therefore, concordant B.P. of water $=T_{w}=\ldots \ldots .{ }^{0} \mathrm{C}$
Ebullioscopic constant of water $\left(k_{b}\right)=0.525$
Table.

Sl.No.	Wt. of KCl 'w'g	B.P. of soln. $\mathrm{T}_{\mathrm{s}}{ }^{0} \mathrm{C}$	Rise in temp. $\Delta \mathrm{T}=\mathrm{T}_{\mathrm{s}-}-\mathrm{T}_{\mathrm{w}}\left({ }^{0} \mathrm{C}\right)$	Volume of soln.= Wt. of soln=W g	$\mathrm{M}=\frac{1000 \times k_{b} \times \mathrm{w}}{}$
1	0.5				
2	1.0				
3	1.5				

Theoretical molecular weight $\left(\mathrm{M}_{\mathrm{T}}\right)$
Experimental molecular weight $\left(\mathrm{M}_{\mathrm{E}}\right)=1+\alpha$

$$
\alpha=\frac{\mathrm{M}_{\mathrm{T}}}{\mathrm{M}_{\mathrm{E}}}-1
$$

Results:

1. Molecular weight of given electrolyte
= i ------ii--------iii--------
2. Degree of dissociation
= i ------ ii \qquad -iii--------

Conclusion: 1. As concentration increases degree of dissociation decreases.
2. As concentration increases Molecular mass also slightly increases.

Note: $\quad \mathrm{KCl}$ is an electrolyte and it gives two particles, $\mathrm{K}^{+} \& \mathrm{Cl}^{-}$. Therefore, molecular weight of KCl is almost half of its theoretical molecular weight.

Expt.No. 7

FIRST ORDER REACTION

Aim: To study the effect of acid strength on hydrolysis of methyl acetate using HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Chemicals: Methyl acetate, $0.5 \mathrm{~N} \mathrm{HCl}, 0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 0.1 \mathrm{~N} \mathrm{NaOH}$, phenolphthalein indicator.
Apparatus: Burette, pipette, conical flask, water bath, funnel etc.,
Theory: $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{-\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}$
The hydrolysis of methyl acetate is a first order reaction and its rate of reaction is proportional to first power of methyl acetate. Water is in large excess, therefore there in no appreciable change in its concentration. Hence, it will not appear in rate equation. Progress of the reaction is monitored by measuring increases in conc. of $\mathrm{CH}_{3} \mathrm{COOH}$ by titrating against standard NaOH solution. The first order velocity constant can be calculated using integrated rate equation;

$$
\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}
$$

Where, ' a ' is initial concentration and
' $a-x$ ' is concentration at time ' t '.
The rate of hydrolysis of methyl acetate is accelerated by mineral acid, H^{+}. Hence, rate is directly proportional to the concentration of H^{+}. Existence of free H^{+}is depending on dissociation of acids. Dissociation of HCl is greater than that of $\mathrm{H}_{2} \mathrm{SO}_{4}$. This can be proved kinetically.

Procedure: \quad Set-I:_ 5 cc methyl acetate $\mathbf{+ 1 0 0}$ cc 0.5N HCl

1. In a clean and dry conical flask, take 5 cc methyl acetate and in another flask 100 cc 0.5 N HCl solution. Keep them in water bath to attain room temperature for 5 min .
2. Fill 0.1 N NaOH solution in a cleaned and rinsed burette. Take $2-3$ ice pieces and 1 or 2 drops phenolphthalein indicator in another conical flask.
3. Mix methyl acetate to 0.5 N HCl , shake well, pipette out 5 cc of this into conical flask containing ice pieces and indicator. Titrate immediately with 0.1 N NaOH till pale pink colour persists. Note down the burette reading at zero minute $\left(\mathrm{V}_{0}\right)$.
4. Titrate, 5 cc of the same reaction mixture at every 10 minutes till 50 minutes.
5. Calculate the value of ' k ' using the given formula.
6. Find the $\log (a-x)$ value up to $4^{\text {th }}$ decimal.
7. Plot a graph of $\log (\mathrm{a}-\mathrm{x}) \mathrm{v} / \mathrm{s}$ time ' t ' and calculate ' k ' from the slope.

Set-II, 5 cc methyl acetate $+0.5 \mathrm{~N}_{\mathbf{H}} \mathrm{SO}_{4}$
Repeat the entire experiment with 5 cc methyl acetate and $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ as above and calculate the value of ' k '.

Observations:

1) The titre value after completing the reaction
$\mathrm{V}_{\infty}=$ \qquad -cc.
2) Initial concentration,

$$
\mathrm{a}=\left(\mathrm{V}_{\infty}-\mathrm{V}_{0}\right)=-----\mathrm{cc} .
$$

Time (min.)	Vol. $\mathrm{NaOH}(\mathrm{cc})$	$\mathrm{x}=\left(\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{0}\right)$	$\mathrm{a}-\mathrm{x}=\left(\mathrm{V}_{\infty}-\mathrm{V}_{\mathrm{t}}\right)$	$\log (\mathrm{a}-\mathrm{x})$	$k=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}\left(\mathrm{min}^{-}\right.$
0	$\mathrm{~V}_{0}=$				
10	$\mathrm{~V}_{\mathrm{t}}=$				
20	$\mathrm{~V}_{\mathrm{t}}=$				
30	$\mathrm{~V}_{\mathrm{t}}=$				
40	$\mathrm{~V}_{\mathrm{t}}=$				
50	$\mathrm{~V}_{\mathrm{t}}=$				
∞	V_{∞}				

Calculations: 1) Formula method: $\quad k=\frac{2.303}{t} \log \frac{a}{a-x}\left(\mathrm{~min}^{-}\right.$
2) Graphical Method: Plot a graph of $\log (a-x) v / s$ time ' t ' and calculate ' k ' from the slope.

Nature of the graph:

Slope $=-\frac{A B}{B C}=-k / 2.303$
$-k=2.303^{\mathrm{BC}} \mathrm{X}$ slope
k = -------------min ${ }^{-1}$

3) Relative strength $=\frac{k_{1}}{k_{2}}$

Where, k_{1} is mean velocity constant for HCl and k_{2} is mean velocity constant for $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Results:

Acids	Formula method	Graphical method
0.5 N HCl	$\mathrm{k}_{1}=-------\min ^{-1}$	$\mathrm{k}_{1}=-------\min ^{-1}$
$0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{k}_{2}=------\mathrm{min}^{-1}$	$\mathrm{k}_{2}=------\min ^{-1}$
Relative strength $=\mathrm{k}_{1} / \mathrm{k}_{2}$		

Remarks: The degree of ionization of HCl is more than $\mathrm{H}_{2} \mathrm{SO}_{4}$, hence the ' k ' value in the
Set I is greater than that of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Hence, k_{1} / k_{2} is always more than unity.
Note: Students may be asked to titrate 5.0 cc of reaction mixture of set-I solution after performing set-II solution for $\mathrm{V}_{\infty}=$ Burette reading for 0.1 N NaOH .

Expt.No. 8

ADSORPTION

Aim : To study the adsorption of acetic acid by activated charcoal and verify Freundlich adsorption isotherm.

Apparatus: Burette, pipette, conical flask with stopper, etc.,
Chemicals: Activated charcoal, $0.1 \mathrm{~N} \mathrm{NaOH}, 0.5 \mathrm{~N}$ acetic acid, phenolphthalein indicator, etc.
Theory: Adsorption is purely a surface phenomenon, the amount of gas or solute from solution adsorbed will greatly depend on surface area, temperature, concentration etc. Freundlich proposed an empirical relation for the variation of amount of solute/gas adsorbed with change in concentration of solution at constant temperature. The empirical relation is shown below:

$$
\mathrm{x} / \mathrm{m}=\mathrm{kC} C^{1 / n} \text { or } \log \mathrm{x} / \mathrm{m}=\log \mathrm{k}+1 / \mathrm{n} \log \mathrm{C}
$$

Where, ' x ' is the amount of adsorbate,
' m ' is amount of adsorbent ' C ' is concentration,
' k and n ' are constants depending upon the nature of adsorbate and adsorbent.
' $1 / n$ ' being less than unity.

Procedure:

1. Prepare five different concentrations of acetic acid in separate 250 cc conical flasks by using 0.5 N acetic acid solution as shown in the table -1 . To each flask add 1 gram of exactly weighed activated charcoal by using glazed papers. Stopper the bottles well and shake them one after another for 5 minutes and place them in water bath for about half an hour.
2. Mean while titrate 5 cc of original acetic acid solution against 0.1 N NaOH using phenolphthalein indicator. Note down the burette reading. From this, calculate the concentration of acetic acid before adsorption $\left(\mathrm{C}_{0}\right)$ for all the five flasks.
3. Filter the contents of the flask through a dry filter paper into a small dry conical flask neglecting the first portion of the filtrate of about 1-2 cc because the filter paper alters the strength of solution by process of absorption.
4. After the filtration, titrate 5 cc of clear solution from each of the five flasks against 0.1 N NaOH using phenolphthalein indicator. Determine the equilibrium concentrations of acetic acid $\left(\mathrm{C}_{e}\right)$ in solution.
5. Find the $\log X$ and $\log C_{e}$ from logarithm table only; and plot a graph of $\log X$ vs. $\log C_{e}$, which gives a straight line. Calculate k from intercept and n from slope.

Observations :- Table-1:

Bottle No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$0.5 N$ acetic acid (cc)	50	40	30	20	10
Water (cc)	0	10	20	30	40

Table-2:

Volume of 0.1 N NaOH required for $5 \mathrm{cc}_{\mathrm{CH}}^{3} \mathbf{\mathrm { COOH }}$ before addition of charcoal
$\mathrm{V}_{\mathrm{x}}=$ \qquad cc.

| $\begin{array}{c}\text { Bottle } \\ \text { No. }\end{array}$ | Titre readings | | Conc. of acid | | $\begin{array}{c}\text { Amount of acid } \\ \text { adsorbed by } \\ \text { Before } \\ \text { adsorption } \\ (\mathrm{V})\end{array}$ | $\begin{array}{c}\text { After } \\ \text { adsorption } \\ \left(\mathrm{V}_{\mathrm{e}}\right)\end{array}$ | $\begin{array}{c}\text { Before } \\ \text { adsorption } \\ \left(\mathrm{C}_{0}\right)\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | \(\left.\begin{array}{c}After

adsorption

\left(\mathrm{C}_{\mathrm{e}}\right)\end{array} $$
\begin{array}{c}1 \text { gram of } \\
\text { charcoal X=C } 0-\mathrm{C}_{\mathrm{e}}\end{array}
$$\right)\)

Calculation: Calculation of titre readings (before adsorption) for bottles
For Bottle-1: 50 cc of acetic acid is present :100\% i.e. $\quad \mathrm{V}=\left(\mathrm{V}_{\mathrm{x}} \times 100\right) / 100$,
For Bottle-2: $\quad \mathrm{V}=\left(\mathrm{V}_{\mathrm{x}} \mathrm{x} 40\right) / 50, \quad$ For Bottle-3: $\quad \mathrm{V}=\left(\mathrm{V}_{\mathrm{x}} \mathrm{x} 30\right) / 50$,
For Bottle-4: $\quad \mathrm{V}=\left(\mathrm{V}_{\mathrm{x}} \mathrm{x} 20\right) / 50, \quad$ For Bottle-5: $\quad \mathrm{V}=\left(\mathrm{V}_{\mathrm{x}} \mathrm{x} 10\right) / 50$.
Calculation of concentration of acetic acid ($\mathbf{C o}_{0} \& \mathrm{Ce}_{\mathrm{e}}$)

$$
\mathrm{C}_{0}=(\mathrm{V} \times 0.1) / 5 \quad \mathrm{C}_{\mathrm{e}}=\left(\mathrm{V}_{\mathrm{e}} \times 0.1\right) / 5
$$

Nature of graph.

$\mathrm{n}=1 /$ slope $\&$
$\log \mathrm{K}=$ intercept
$\mathrm{K}=\operatorname{antilog}$ (intercept)

Results: 1) Value of $n=-----$ and
2) Value of $K=----$

Conclusion: 1. The graph of $\log X v / s \log C_{e}$, which gives a straight line.
2. Value of $n>1$, indicates that the adsorption of acetic acid on charcoal follows Freundlich adsorption isotherm.

ATOMIC PARACHOR (SURFACE TENSION)

Aim: Determination of the Surface Tension and Parachor of toluene, xylene and n-hexane.
Calculate the atomic Parachor of Carbon and Hydrogen.
Chemicals: Liquids: Toluene, Xylene and n-hexane.
Apparatus: Trauts Stalagmometer with pinchcock, beaker, etc.,
Theory: Surface tension is one of the physical properties of the liquid. It is defined as the force in dynes acting on a surface at right angles to any line of unit length. This can be determined by drop number method using Stalagmometer. The surface tension can be calculated according to the following expression:

$$
\gamma_{\mathrm{L}}=\frac{\text { Where } \gamma_{\mathrm{w}}}{}=\frac{\text { surface tension of water }(72 \text { dyne/cm })}{\mathrm{n}_{\mathrm{w}} \times \mathrm{d}_{\mathrm{L}}} \times \gamma_{\mathrm{L}} \times \mathrm{d}_{\mathrm{w}} \mathrm{\gamma} \quad \begin{aligned}
& \gamma_{\mathrm{L}}=\text { surface tension of liquid } \\
& \mathrm{n}_{\mathrm{w}}=\text { no. drops of water, } \mathrm{n}_{\mathrm{L}}=\text { no.of drops for liquid, } \\
& \mathrm{d}_{\mathrm{w}}=\text { density of water, } \mathrm{d}_{\mathrm{L}}=\text { density of liquid. }
\end{aligned}
$$

The magnitude of surface tension is used to calculate the parachor of liquid series, which are additive and constitutive properties. The parachor is calculated using the following equation.

$$
\mathrm{P}=\frac{\mathrm{M} \gamma^{1 / 4}}{\mathrm{~d}} \begin{gathered}
\text { Where, } \mathrm{P}=\text { parachor, } \mathrm{d}=\text { density } \\
\gamma=\text { surface tension of liquid } \& \mathrm{M}=\mathrm{Mol} . \text { Wt. of liquid. }
\end{gathered}
$$

When the parachor are calculated for the liquids of given homologous series, parachor values of difference in the atoms / group can be calculated.

Procedure:

1. Clean the Stalagmometer by ether / acetone. Dry it thoroughly by blowing hot air from rubber air blower and attach a clean and dry rubber with a screw clip in the middle to the upper end of Stalagmometer.
2. Clamp the apparatus exactly in a vertical position, lower end should be slightly inside the edge of the beaker to avoid disturbance while falling the drops by air.
3. Loosen the screw clip and suck the liquid taken in a small beaker, so that it is well above the upper round mark (care must taken to see the liquid does not enter the rubber tube). Close the tubes with the screw clips.
4. Adjust the flow of liquid using the screw clip, so that the number of drops falling from the flat end is between 20-25 drops per minute. Do not disturb this adjustment.
5. Suck the liquid again little above the upper mark and count the number of drops when the liquid flows from the upper round mark to the lower mark.
6. Repeat the same procedure for at least three times and calculate the average number of drops for the liquid.
7. Rinse the stalagmometer with ether / acetone and blow the air to dry before using for new liquid.
8. Take similar readings for other liquids under study and finally for distilled water.
9. Calculate the surface tension and parachor of each liquid by using the suitable formula and finally the parachor of CH_{2} from the difference in the parachor of toluene and xylene.
10. From this, calculate the atomic parachor of ' H ' and ' C '.

Observations:

Liquids	No. of drops of liquids	Mean(n)	Density g / cc	Surface tension (dyne/cm)	Molar. mass	Parachor (P)
Toluene	i ii iii		0.8660		92	$\mathrm{P}_{\mathrm{T}=}$
Xylene	i ii iii		0.8811		106	$\mathrm{P}_{\mathrm{X}}=$
Hexane	i ii iii		0.6548		86	$\mathrm{P}_{\mathrm{Hx}}=$
Water	i ii iii		1.0		18	

Calculation :

1) Surface tension of liquid : $\gamma_{L}=\frac{n_{w} \times d_{L}}{n_{L} \times d_{w}} \times \gamma_{w}$
2) Calculation of parachor: $\quad P=\frac{M \gamma^{1 / 4}}{d}$
3) Parachor of CH_{2} group $=\mathrm{P}_{\mathrm{X}}-\mathrm{P}_{\mathrm{T}}=\mathrm{P}\left(\mathrm{CH}_{2}\right)=-------$
3. Calculation of atomic parachor of hydrogen:

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right) & =6 \mathrm{P}\left(\mathrm{CH}_{2}\right)+2 \mathrm{P}(\mathrm{H}) \\
2 \mathrm{P}(\mathrm{H}) & =\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)-6 \mathrm{P}\left(\mathrm{CH}_{2}\right) \\
\mathrm{P}(\mathrm{H}) & =\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)-6 \mathrm{P}\left(\mathrm{CH}_{2}\right)\right\} / 2=-------
\end{aligned}
$$

4. Calculation of atomic parachor of carbon:

$$
\mathrm{P}(\mathrm{C})=\mathrm{P}\left(\mathrm{CH}_{2}\right)-2 \times \mathrm{P}(\mathrm{H}) \quad=----
$$

Results:

Surface Tension of	Toluene	Xylene	Hexane
(dyne/cm)			
Parachor of carbon			

Theoretical Values

Surface Tension of	Toluene	Xylene	Hexane
$($ dyne/cm)			

PERCENTAGE COMPOSITION (VISCOSITY)

Aim: To determine the coefficient of viscosity of liquids A, B and C (C : mixture of $\mathrm{A} \& \mathrm{~B}$) by Ostwald's Viscometer. Calculate the percentage composition of unknown mixture.

Chemicals: Pure liquids A and B and four mixtures of known percentage composition by mass and mixture ' C ' of unknown composition.

Apparatus: Ostwald's Viscometer, beaker, specific gravity bottle, weight box, etc.,
Theory: Viscosity is a resistance exerted by a liquid against the displacement of its own molecules. It is expressed in terms of coefficient of viscosity (η). It is defined as 'the force acting on unit area to maintain unit difference of velocity between two parallel layers of liquid 1 cm apart'. It can be calculated using Poiseuille's equation when η of other liquid is known.

$$
\eta_{I}=\frac{\eta_{w} \times t_{1} d_{l}}{t_{w} d_{w}}--- \text { poise }
$$

> Where ' t_{L} ' is time of flow of liquid,
> ' t_{w} ' is time of flow of water
> ' d_{L} ' is density of liquid \& ' d_{w} ' is density of water

Experimentally, this can be determined with the help of Ostwald's viscometer by taking water as a reference liquid having ' η_{w} ', the viscosity coefficient 0.0089 poise. ' η ' is an additive property. Hence it is used to calculate the percentage composition of liquid mixtures of unknown composition

Procedure:

1. Clean the Viscometer with acetone or ether and dry it thoroughly by blowing hot air from rubber air blower.
2. Clamp the Viscometer in a perfectly vertical position.
3. Attach a clean piece of rubber tube to the narrow arm of the viscometer.
4. Take 10 cc of the liquid ' A ' with the help of a pipette into the wider arm of viscometer.
5. Suck the liquid by a rubber tube into the capillary side bulb up to a little above the upper mark. Allow the liquid to flow down through the capillary and at the same time record carefully the time required for the liquid to flow from upper mark to the lower mark on the capillary arm using stopwatch. Take at least three readings with each liquid and find the mean time in second (t_{L}).
6. Rinse the Viscometer with ether / acetone and blow the air to dry before using for new liquid.
7. Repeat the same procedure for remaining liquids and lastly find the time of flow for water $\left(\mathrm{t}_{\mathrm{w}}\right)$.
8. Determine the density of liquid C using a specific gravity bottle. Calculate the η for all the liquids using the given formula.
9. Plot the graph ' η ' against percentage composition that gives a straight line. From the graph, read the composition of the mixture ' C '.
10. Percentage composition of can also be calculated using the given formula.

Observation:

1) Determination of Density of C:
1. Weight of empty of specific gravity bottle $\quad=\mathrm{w}_{1}=----\mathrm{g}$
2. Weight of specific gravity bottle + liquid $\mathrm{C}=\mathrm{w}_{2}=----\mathrm{g}$
3. Weight of specific gravity bottle + water $=\mathrm{w}_{3}=----\mathrm{g}$
4. Weight of liquid $C=w_{2}-w_{1}=----g$
5. Weight of water
$=\left(w_{3}-w_{1}\right)=-----g$

$$
\text { Density of liquid } C=\frac{\text { Weight of liquid } C=\left(w_{2}-w_{1}\right)}{\text { Weight of water }=\left(w_{3}-w_{1}\right)}
$$

2) Determination of $\boldsymbol{\eta}$ and percentage composition:

Liquids	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$
$\begin{array}{l}\text { Percentage } \\ \text { composition }\end{array}$	100	100		$\begin{array}{c}\mathrm{A}=40 \\ \mathrm{~B}=60\end{array}$	$\begin{array}{c}\mathrm{A}=50 \\ \mathrm{~B}=50\end{array}$	$\begin{array}{c}\mathrm{A}=60 \\ \mathrm{~B}=40\end{array}$	$\mathrm{~A}=70$	$\mathrm{~B}=30$

Calculation:

i) $\eta_{I}=\frac{\boldsymbol{\eta}_{w} \times \mathbf{t}_{\mathbf{I}} \mathbf{d}_{\mathbf{l}}}{\mathrm{t}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}}-\cdots$ poise
ii) Percentage composition of ' B ' in ' C ' $=\frac{100\left(\eta_{C}-\eta_{A}\right)}{\left(\eta_{B}-\eta_{A}\right)}$

$$
'^{\prime}=\frac{100\left(\eta_{C}-\eta_{A}\right)}{\left(\eta_{B}-\eta_{A}\right)}
$$

Results: 1) Viscosity coefficient of ' A ' = \qquad Poise
2) Viscosity coefficient of ' B ' = . \qquad Poise
3) Percentage composition of B in C by formula method $=$
4) Percentage composition of B in C by graphical method $=$

Expt.No. 11

DISTRIBUTION

Aim: To study the distribution of benzoic acid between water and toluene.
Chemicals: Benzoic acid, toluene, 0.1 N NaOH solution and phenolphthalein.
Apparatus: Conical flasks, burette, rubber cork, pipette, etc.,
Theory: When a particular solute is added in two immiscible solvents which are in contact with each other, the solute itself distributes between these two solvents such that, the ratio of the solute concentration in both the solvents remains constant at a constant temperature. This is called Nernst distribution law.
i.e., $\quad \mathrm{K}=\frac{\text { Concentration of solute in solvent-1 }\left(\mathrm{C}_{1}\right)}{\text { Concentration of solute in solvent-2 }\left(\mathrm{C}_{2}\right)}$

Where ' K ' is a constant known as distribution co-efficient.
When a solute undergoes association or dissociation the law needs modification. For example, when a solute like benzoic acid or acetic acid (mono carboxylic acids) is added to two immiscible solvents such as water and toluene, the solute undergo dimerisation in non polar solvents like toluene due to hydrogen bonding. The dimerisation is represented below:

Hence, K will not remain constant, but the modified law $K^{I}=C_{1} / \sqrt{C_{2}}$ is constant. The dimerization can be proved experimentally.

Procedure

1. Label the four cleaned having well Stoppard bottles as $1,2,3 \& 4$.
2. Mix water, toluene \& benzoic acid from the measuring cylinder to these bottles as per the table-1.
3. Stopper the bottles tightly and shake vigorously for about 30 minutes.
4. Keep the bottles in water bath for 15 minutes to attain the lab. Temperature. Two distinct layers will be separated. Upper will be that of organic layer (toluene) and lower will be aqueous layer.
5. Pipette out 25 cc of aqueous layer from bottle 1 (lower layer) to a clean conical flask and titrate against 0.1 N NaOH solution using phenolphthalein as indicator. Similarly, titrate the aqueous layer for bottle $2,3 \& 4$.
6. Separate the toluene layer (upper layer) using separating funnel from bottle No. 1 and pipette out 5 cc of this toluene layer. Add 10 cc water and 2 drops phenolphthalein. Titrate against 0.1 N NaOH solution.
7. Similarly, separate and titrate the toluene layer for bottle number 2,3 and 4 as above.
8. Calculate the concentration of benzoic acid in aqueous layer $\left(\mathrm{C}_{1}\right)$ and toluene layer $\left(\mathrm{C}_{2}\right)$ and also calculate $\mathrm{K}=\mathrm{C}_{1} / \mathrm{C}_{2}$ and $\mathrm{K}^{\mathrm{I}}=\mathrm{C}_{1} / \sqrt{ } \mathrm{C}_{2}$.

Observations:

Table-1: Preparation of solution mixtures.

Bottle No.	Volume of water (cc)	Volume of toluene (cc)	Wt. of benzoic acid. (g)
1	80	20	0.5
2	80	20	1.0
3	80	20	1.5
4	80	20	2.0

Table-2: Determination of K and K^{I} values.

Bottle No.	Burette reading of 0.1 N NaOH		Concentration of benzoic acid		$\mathbf{K}=\mathbf{C}_{\mathbf{1}} / \mathbf{C}_{\mathbf{2}}$	$\mathbf{K}^{\mathbf{I}}=\mathbf{C}_{\mathbf{1}} / \sqrt{\mathbf{C}_{\mathbf{2}}}$
	Toluene layer $(5 \mathrm{cc})$	Aqueous layer $\left(\mathrm{C}_{1}\right)$	Toluene layer $\left(\mathrm{C}_{2}\right)$			
2						
3						
4						

Calculations:
1). $\quad \mathrm{C}_{1}=\frac{\text { Volume of } 0.1 \mathrm{~N} \mathrm{NaOH} \text { (B.R) } \times \text { Normality of } \mathrm{NaOH}}{25 \text { (volume of aqueous layer) }}$
2). $\quad \mathrm{C}_{2}=\frac{\text { Volume of } 0.1 \mathrm{~N} \mathrm{NaOH}(\mathrm{B} . \mathrm{R}) \times \text { Normality of } \mathrm{NaOH}}{5 \text { (volume of toluene layer) }}$
3). $\mathrm{K}=\frac{\mathrm{C}_{1} \text { (Aqueous layer) }}{\mathrm{C}_{2} \text { (toluene layer) }}$
4). $\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C}_{1}}{\sqrt{\mathrm{C}_{2}}}$

Result : $\quad \mathrm{K}^{\mathrm{I}}$ remain constant.

Conclusion: The values of K^{I} are found to be constant for all 4 different concentrations of benzoic acid. Hence, benzoic acid is existed in dimeric form in toluene layer and in equilibrium with monomer in the aqueous layer.

Aim: To determine of Heat of solution of KNO_{3} by solubility method.
Chemicals: Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.5 \mathrm{~N} \mathrm{NaOH}$ solution, KNO_{3} crystals and phenolphthalein.
Apparatus. Thermos flask, $1 / 10^{\text {th }}{ }^{\circ} \mathrm{C}$ thermometer, magnifying lens, measuring cylinder, etc.,
Theory: Heat of solution is defined as the, the quantity of heat change when one mole of the solute is dissolved in a specified amount of solvent.
$\mathrm{KNO}_{3}(\mathrm{~S})+$ Water $\longrightarrow \mathrm{KNO}_{3}(\mathrm{aq}): \quad \Delta \mathrm{H}_{\text {sol }}=\mathrm{Q} \mathrm{kJ}$.
Solubility of KNO_{3} is endothermic in nature. Hence, solution loses heat. The loss of heat can be determined experimentally using calorimeter as under:

A known amount of potassium nitrate is dissolved in given volume of water, the amount of heat absorbed is determined. The amount of heat absorbed, when one mole of potassium nitrate dissolved in one dm^{3} water is calculated. It is the heat of solution $\left(\Delta \mathrm{H}_{\text {sol }}\right)$.

In the determination of quantity of loss in calorimeter, there will be a loss of heat due to the absorption of heat by the thermometer, wall of the calorimeter, stirrer, water etc. This loss of heat is called water equivalent of calorimeter. It can be measured by measuring the quantity of heat liberated 'Q'for a given concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Procedure

I. Determination of water equivalent of calorimeter: \boldsymbol{w} (Calorimetric constant).

1. Take 98 cc distilled water in a thermos flask provided with a stirrer and a thermometer and kept at a room temperature.
2. Start stopwatch and temperature is noted for every minute up to 5 minute $\left(\mathrm{T}_{1}{ }^{0} \mathrm{C}\right)$. Add 2 cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 5.5 minute, stirred well and note down the temperature at $6^{\text {th }} \mathrm{min}$.
3. Record the temperature continuously at the interval of one minute up to $15^{\text {th }}$ minute $\left(\mathrm{T}_{2}{ }^{0} \mathrm{C}\right)$.
4. Plot the graph of temperature v / s time and calculate the difference in temperature $\left(\Delta \mathrm{T}_{\mathrm{w}}\right)$.
5. Titrate the content of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution in the calorimeter by pipetting out 10 cc to 100 cc conical flask and titrate against 0.5 N NaOH solution using phenolphthalein indicator.
6. Calculate the normality and find out the amount of heat liberated (Q) by the calculated normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution using standard graph.
7. Water equivalent of calorimeter (W) can be calculated using the formula: $W=\mathrm{Q} / \Delta \mathrm{T}_{\mathrm{w}}$

II) Determination of Heat of solution of KNO_{3}.

1. Take 100 cc of water in a thermos flask, fitted with a thermometer and stirrer.
2. Start stopwatch and note down the temperature for every minute upto 5 minutes. Add $2 \mathrm{~g} \mathrm{KNO}_{3}$ crystals at 5.5 minute, stir well and note down the temperature at $6^{\text {th }}$ minute.
3. Record the temperature continuously at the interval of one minute up to $15^{\text {th }}$ minute.
4. Plot the graph of temperature v / s time and find the decrease in difference $\left(\Delta \mathrm{T}_{\mathrm{s}}\right)$.
5. Calculate heat of solution using the given formula.

Observation

Table-1: Determination of water equivalent of calorimeter or Calorimetric constant (\boldsymbol{W}).
$98 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}+2 \mathrm{cc} \mathrm{H}_{2} \mathrm{SO}_{4}$ (mix at 5.5 min .)

Time (min)	1	2	3	4	5	5.5	6	7		9	10	11	12	13	14	15
Temp	$\longleftarrow \mathrm{T}_{1}$ (water) \longrightarrow					Mixing	$\longleftarrow \mathrm{T}_{2}$ (Solution) \longrightarrow									
$\left({ }^{0} \mathrm{C}\right)$						-----										

Determination of normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution:

10 cc of the above $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is pipette out in a conical flask and titrated against 0.5 N NaOH using phenolphthalein indicator.

$$
\begin{aligned}
& \left(\mathrm{N}_{1} \mathrm{~V}_{1}\right)_{\mathrm{H}_{2} \mathrm{SO}_{4}}^{=}\left(\mathrm{N}_{2} \mathrm{~V}_{2}\right)_{\mathrm{NaOH}} \\
& \quad \mathrm{~N}_{1}=\frac{0.5 \times \mathrm{V}_{2}}{10}=------\mathrm{N}
\end{aligned}
$$

Fig.-1.Determination of ΔT_{w}

Find out the 'Q' from the standard graph for corresponding normality $=-\ldots$ Time $(\min \longrightarrow$
Calculations of water equivalent of calorimeter $=\mathrm{Q} / \Delta \mathrm{T}_{\mathrm{w}}=-----\mathrm{kJ} /{ }^{\circ} \mathrm{C}$.
3) Determination of heat of solution.

$$
100 \mathrm{cc}_{2} \mathrm{O}+2 \mathrm{~g} \mathrm{KNO}_{3} \text { (mix at } 5.5 \mathrm{~min} \text {.). }
$$

Time (min)	1	2	3	4	5	5.5	6	7	8	9	10	11	12	13	14	15
Temp	$\longleftarrow \mathrm{T}_{3} \longrightarrow$					Mix	$\longleftarrow \mathrm{T}_{4} \longrightarrow$									
$\left({ }^{0} \mathrm{C}\right)$						-----										

Heat of Solution $\left(\Delta \mathbf{H}_{\text {sol }}\right)=\frac{1000 \times \boldsymbol{W} \times \Delta \mathrm{T}_{\mathrm{s}}}{(\text { Normality } \times \text { Volume })_{\mathrm{KNO}_{3} \text { soln }} .}$
$\left(2 \mathrm{~g} \mathrm{KNO}_{3}\right.$ in $\left.100 \mathrm{H}_{2} \mathrm{O}=0.198 \mathrm{~N}\right)$

$$
\begin{aligned}
& =\frac{1000 \times \boldsymbol{W} \times \Delta \mathrm{T}_{\mathrm{s}}}{0.198 \times 100} \\
& =-\cdots--\mathbf{x} \quad \mathbf{k J ~ m o l}^{-1}
\end{aligned}
$$

Result: Heat of solution of $\mathrm{KNO}_{3} \quad=------\mathrm{kJ} \mathrm{mol}^{-1}$.
Theoretical value: Heat of solution of $\mathrm{KNO}_{3}=+35.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Fig.-2.Determination of $\Delta \mathrm{T}_{\mathrm{s}}$

Standard gragh for determination of water equivalent of calorimeter
Quantity of heat liberated by $\mathrm{H}_{2} \mathrm{SO}_{4}$ at various concentrations in kJ

B.Sc. IV Sem
 Inorganic Experiments

Total No of hours /week: 04Hrs.
Pract. : 40 Marks
Total No. of Hours
: 52Hrs.
I. A. : 10 Marks

Sl. No.	CONTENTS	Page No.
1.	Explanation regarding Solubility, solubility product, common ion effect and applications of these in physico-chemical principles of separation of cations	114
2.	Semi - micro qualitative Analysis of Inorganic salt mixtures	120
3.	Determination of dissolved oxygen present in water by Winkler's method.	130
4.	Determination of C.O.D in polluted water.	131
5.	Reactions	132

Chemistry Practicals : 50 marks

Distribution of Practical Marks

1. Internal Assessment
: 10 marks
2. Experiments
: 40 marks

Distribution of 40 marks of Experiments

1. Preliminary tests \& presentation
: 08 marks $(6+2)$
2. Positive radicals(Gp test+C.T) : 12 marks $[(2+4) \times 2]$
3. Negative radicals $(G p$ test $+\mathrm{C} . \mathrm{T}) \quad: 10$ marks $[(2+3) \times 2]$
4. Journal :05 marks
5. Viva Voce : 05 marks

Total : 40 marks

1.Chemical Analysis

Chemical analysis plays an important role in the study of composition or constituents of substances or materials. The chemical analysis comprises of quantitative and qualitative analysis.
a) Quantitative analysis is concerned with the determination of respective amounts of any of the chemical substances (determination of how much of a particular substance is present in a sample).
b) Qualitative analysis deals with the detection or identification of constituents (elements or molecules etc.) present in an unknown compound or mixture of compounds.

Inorganic salts are a class of compounds made up of positively and negatively charged components or species called ions. Positively charged component is positive ion and negatively charged component is negative ion. Positive ions are also called cations or basic radicals as they are derived from bases viz., $\mathrm{Na}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$ and Fe^{3+} etc. and the negative ions are also called anions or acid radicals derived from acids viz., $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$ and $\mathrm{BO}_{3}{ }^{3-}$ etc..
Qualitative analysis of salt mixtures is based on following physico- chemical principles.
Explanation regarding Solubility, solubility product, common ion effect and applications of these in physico-chemical principles of separation of cations into groups in qualitative analysis of inorganic salts

Solubility: This is weight in grams of the substance, which dissolves in 100 gram of the solvent to form a saturated solution at a particular temperature. It can also be defined as the number of moles of solute required just to prepare one dm^{3} of the saturated solution at a given temperature or it is the number of moles of the solute dissolved in one dm^{3} of the saturated solution.

Solubility of some substances in $\mathbf{1 0 0 g}$. of water at $\mathbf{2 0}^{\circ} \mathbf{C}$.		
Substances	Solubility at $20^{\circ} \mathrm{C}$	At $30^{\circ} \mathrm{C}$
BaCl_{2}	35.7 g	38.2 g
CuSO_{4}	20.1 g	25.0 g
KI	104.0 g	158.0 g
BaSO_{4}	$2.4 \times 10^{-4} \mathrm{~g}$	$2.85 \times 10^{-4} \mathrm{~g}$

Solubility of the substance changes with the temperature. As it is seen above, there is an increase in the solubility with increase in temperature. However, in only a few compounds like anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, CaSO_{4} etc. the solubility decreases with increase in temperature.

Solubility of the substances varies with the solvents also. The substances whose solubility is less than 0.01 moles per litre are known as sparingly soluble salts.

An expression for the solubility of sparingly soluble salt can be given by considering a saturated aqueous solution of the type 'BA' in which the following equilibrium exists;

No other species of B \& A than these represented are present in the solution, the molar solubility is given by $\mathrm{S}=[\mathrm{BA}]=\left[\mathrm{B}^{+}\right]=\left[\mathrm{A}^{-}\right]$

Here 'S' = solubility of BA
Solubility product: There are many ionic solids that are sparingly soluble in water.
For ex: $\mathrm{AgCl}, \mathrm{BaSO}_{4}, \mathrm{Ag}_{2} \mathrm{SO}_{4} \& \mathrm{Al}(\mathrm{OH})_{3}$ etc.

Solubility product:

Definition: The solubility product is defined as the product of molar concentration of the constituent ions raised to the appropriate power according to the balanced equation.

A sparingly soluble salt dissolves slightly in water forming saturated solution consequently equilibrium is established between the undissociated ionic solid and ions of the dissolved salt.

For ex. In case of AgCl , we have the equilibria

By applying the law of mass action we get, $\quad \mathrm{K}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{AgCl}]}$
$\mathrm{K}[\mathrm{AgCl}]=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] ; \quad[\mathrm{AgCl}]$ is taken as unity \square it is solid.
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$is known as solubility product of AgCl which is constant at a given temperature.
For a sparingly salt 'BA' equilibrium for saturated solution is

By applying the law of mass action we get $\mathrm{K}_{\text {eqm }} \frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{BA}]}$

$$
\left[\mathrm{B}^{+}\right]\left[\mathrm{A}^{-}\right]=\mathrm{K}_{\mathrm{eqm}}[\mathrm{BA}]=\mathrm{constant}
$$

For a general case the sparingly soluble salt of the type $\mathbf{B}_{\mathbf{m}} \mathbf{A}_{\mathbf{n}}$

$$
\left[\mathbf{B}^{\mathrm{b}+}\right]^{\mathrm{m}}\left[\mathbf{A}^{\mathrm{a}-}\right]^{\mathrm{n}}=\mathbf{K}_{\mathrm{sp}}
$$

When the product of the ionic concentration (ionic product) exceeds the solubility product, the salt will precipitate. When the product of ionic concentration is lesser than the solubility product the salt will dissolve till the $K_{\text {sp }}$ value is reached. When $\left[\mathbf{B}^{+}\right]\left[\mathbf{A}^{-}\right]=$ionic product $=$solubility product, solute remains dissolved in solution.

$$
\begin{aligned}
\text { If }\left[\mathrm{B}^{+}\right]\left[\mathrm{A}^{-}\right] & >\mathrm{K}_{\mathrm{sp}} \\
{\left[\mathrm{~B}^{+}\right]\left[\mathrm{A}^{-}\right] } & \text {salt precipitates } \\
\mathrm{K} & \text { salt dissolves }- \text { solution unsaturated }
\end{aligned}
$$

The molar solubility is given by $\mathrm{S}=[\mathrm{BA}]=\left[\mathrm{B}^{+}\right]=\left[\mathrm{A}^{-}\right]$
Here $S=$ solubility of BA

Solubility product expression

An expression which relates solubility of an electrolyte(Salt) and its solubility product.
i) BA type electrolyte(Salt) : $\quad \mathrm{BA}_{(\mathrm{s})} \quad \rightleftharpoons \mathrm{B}^{+}+\mathrm{A}^{-}$

$$
\left[\mathrm{B}^{+}\right]=\mathrm{S} \mathrm{~mol} \mathrm{dm}{ }^{-3}\left[\mathrm{~A}^{-}\right]=\mathrm{S} \text { mol dm}{ }^{-3} \quad \mathrm{k}_{\mathrm{sp}}=\left[\mathrm{B}^{+}\right]\left[\mathrm{A}^{-}\right]=\mathrm{S} . \mathrm{S} \text { or } \mathbf{k}_{\mathrm{sp}}=\mathbf{S}^{2}
$$

ii) $\mathrm{B}_{2} \mathrm{~A}$ type electrolyte(Salt): $\quad \mathrm{B}_{2} \mathrm{~A}_{(\mathrm{s})} \rightleftharpoons 2 \mathrm{~B}^{+}+\mathrm{A}^{2-}$

$$
\left[\mathrm{B}^{+}\right]=2 \mathrm{~S} \mathrm{~mol} \mathrm{dm}{ }^{-3}\left[\mathrm{~A}^{2-}\right]=\mathrm{S} \mathrm{~mol} \mathrm{dm}{ }^{-3} \quad \mathrm{k}_{\mathrm{sp}}=\left[\mathrm{B}^{+}\right]^{2}\left[\mathrm{~A}^{2-}\right]=(2 \mathrm{~S})^{2} \cdot \mathrm{~S} \text { or } \mathbf{k}_{\mathrm{sp}}=4 \mathbf{S}^{\mathbf{3}}
$$

iii) BA_{2} type electrolyte(Salt): $\quad \mathrm{BA}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{B}^{2+}+2 \mathrm{~A}^{-}$

$$
\left[\mathrm{B}^{2+}\right]=\mathrm{S} \mathrm{~mol} \mathrm{dm}{ }^{-3}\left[\mathrm{~A}^{-}\right]=2 \mathrm{~S} \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{k}_{\mathrm{sp}}=\left[\mathrm{B}^{2+}\right]\left[\mathrm{A}^{-}\right]^{2}=\mathrm{S} .(2 \mathrm{~S})^{2} \text { or } \mathbf{k}_{\mathrm{sp}}=4 \mathbf{S}^{3}
$$

Common ion effect: On dissolving a weak electrolyte like $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{4} \mathrm{OH}$ etc. an equilibrium gets established between the ions and undissociated molecules

A solution strong electrolyte containing a common ion is added, the concentration of the common ion increases. e.g. If $\mathrm{NH}_{4} \mathrm{Cl}$ is added to a solution of $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{NH}_{4} \mathrm{Cl}$ is being a strong electrolyte dissociates completely and provides a large number of $\mathrm{NH}_{4}{ }^{+}$ions (common ions).

According to Le-chatelier's principle with the increase in concentration of $\mathrm{NH}_{4}{ }^{+}$ions, the equilibrium of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ gets shifted towards the left. Thus the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ is suppressed.
The suppression of dissociation of a weak electrolyte by the addition of a strong electrolyte that produces a common ion is called "common ion effect".

The common cations are divided in to six groups - Group I, II, III, IV, V \& VI.

These metal cations of any group are precipitated by a particular group reagent. The identification of cations within each group is based on specific characteristics of each group.
Role of solubility, solubility product $\&$ common ion effect in the precipitation $\&$ separation of various cations in different groups in qualitative analysis

Group I: $\left(\mathbf{P b}^{\mathbf{2 +}}, \mathbf{A g}^{+} \boldsymbol{\&} \mathbf{H g}^{+}\right.$or $\left.\mathbf{H g}^{2+}{ }^{\mathbf{2}}\right)$ - Group Reagent is Dilute $\mathbf{H C l}$

The group I cations get precipitated as their chlorides such as $\mathrm{PbCl}_{2}, \mathrm{AgCl} \& \mathrm{Hg}_{2} \mathrm{Cl}_{2}$ on adding dilute HCl to the original solution. Chlorides of the cations of Group I have low solubility products and their ionic products exceed easily solubility products resulting in their precipitation.
On the other hand chlorides of the cations of succeeding groups are not precipitated in group I as they have very high solubility products which are not exceeded by their ionic products.

Group II: $\left(\mathbf{H g}^{2+}, \mathbf{P b}^{2+}, \mathbf{B i}^{3+}, \mathbf{C u}^{2+}, \mathbf{C d}^{2+}, \mathbf{A s}^{3+}\right.$ or ${ }^{5+}, \mathbf{S b}^{3+}$ or ${ }^{5+}, \mathbf{S n}^{2+}$ or $\left.{ }^{4+}\right)$-Group Reagent is $\mathbf{H}_{2} \mathrm{~S}$ in presence of dil. $\mathbf{H C l}$

These cations are precipitated as their sulphides by passing $\mathrm{H}_{2} \mathrm{~S}$ through their solution containing hydrochloric acid. The dissociation of $\mathrm{H}_{2} \mathrm{~S}$ is suppressed due to the presence of H^{+}ions from HCl (common ion effect). The concentration of $\mathrm{S}^{2-},\left[\mathrm{S}^{2-}\right]$ is inversely proportional to the concentration of the hydrogen ion $\&$ hence the $\left[\mathrm{S}^{2-}\right]$ ion can be varied by varying concentration of H^{+}ion.

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-} \quad \mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{--} \text {or } \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}
$$

Therefore, $\left[\mathrm{S}^{2-}\right]$ is very low in such solution. Cations of group II precipitate as their sulphides because their solubility products are extremely low. i.e. ionic product easily exceeds solubility products even if $\left[\mathrm{S}^{2-}\right]$ is very low. On the other hand, $\mathrm{CoS}, \mathrm{NiS}, \mathrm{ZnS} \& \mathrm{MnS}$ do not precipitate because they have large solubility products. Ionic product of these salts can exceed solubility products only if the solution contains a large number S^{2-} ions.

\[

\]

Group III : ($\mathbf{F e}^{3+}, \mathbf{A l}^{\mathbf{3 +}} \& \mathbf{M n}^{2+}$) Group Reagent is $\mathbf{N H}_{4} \mathrm{OH}$

In the Group III, $\mathrm{NH}_{4} \mathrm{OH}$ is added to the solution in presence of $\mathrm{NH}_{4} \mathrm{Cl}$, which gives $\mathrm{NH}_{4}{ }^{+}$ions. Due to common ion effect, dissociation of the weak base $\mathrm{NH}_{4} \mathrm{OH}$ gets further suppressed.

$$
\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Group III	Succeeding groups
$\mathrm{Al}(\mathrm{OH})_{3}=2 \times 10^{-32}$	$\mathrm{Zn}(\mathrm{OH})_{2}=4.5 \times 10^{-17}$
$\mathrm{Mn}(\mathrm{OH})_{2}=4.5 \times 10^{-17}$	$\mathrm{Mg}(\mathrm{OH})_{2}=4.5 \times 10^{-17}$
$\mathrm{Fe}(\mathrm{OH})_{2}=1.5 \times 10^{-11}$	$\mathrm{Sr}(\mathrm{OH})_{2}=3.2 \times 10^{-4}$
$\mathrm{Fe}(\mathrm{OH})_{3}=6.8 \times 10^{-38}$	

$\left[\mathrm{OH}^{-}\right]$of the solution is extremely low. $\mathrm{Still}, \mathrm{Al}(\mathrm{OH})_{3} \& \mathrm{Fe}(\mathrm{OH})_{3}$ readily precipitate out because their solubility products are very low. They are easily exceeded even in solutions of low [OH^{-}]. But $\mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+} \& \mathrm{Mg}^{2+}$ etc. do not precipitate as their hydroxides because the ionic product does not exceed the solubility product for these compounds in presence of $\mathrm{NH}_{4} \mathrm{Cl} \&$ therefore remain in solution.
Group IV: $\left(\mathbf{C o}^{\mathbf{2 +}}, \mathbf{N i}^{\mathbf{2 +}}, \mathbf{Z n}^{\mathbf{2 +}} \& \mathbf{M n}^{2+}\right)$ Group Reagent is $\mathbf{H}_{2} \mathrm{~S}$ in presence of $\mathrm{NH}_{4} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{~S}$ is passed in to the solution in the presence of $\mathrm{NH}_{4} \mathrm{OH}$. Dissociation of $\mathrm{H}_{2} \mathrm{~S}$ is favored in alkaline solutions, as the OH^{-}ions of the solution remove H^{+}ions obtained during dissociation of $\mathrm{H}_{2} \mathrm{~S}$ as

$$
\mathrm{H}_{2} \mathrm{O} . \quad \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}
$$

As a result [S^{2-}] is very high in such a solution. Ionic product exceeds the solubility product for $\mathrm{CoS}, \mathrm{NiS}, \mathrm{ZnS} \& \mathrm{MnS}$ and hence they precipitate.

Group V : $\left(\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+} \& \mathrm{Sr}^{2+}\right)$ Group Reagent is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl} \& \mathrm{NH}_{4} \mathrm{OH}$

When $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is added in presence of $\mathrm{NH}_{4} \mathrm{Cl} \& \mathrm{NH}_{4} \mathrm{OH}$ to the solution containing $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}$ \& Sr^{2+} they get precipitated as carbonates.
$\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \quad \mathrm{NH}_{4}\left(\mathrm{CO}_{3}\right)_{2} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{CO}_{3}{ }^{2-}$
Due to the common ion effect, ionization of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is suppressed in presence of $\mathrm{NH}_{4} \mathrm{Cl} \& \mathrm{NH}_{4} \mathrm{OH}$. However, the low concentration of $\mathrm{CO}_{3}{ }^{2-}$ ions is sufficient to exceed the solubility products of carbonates of cations of group IV $\left(\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+} \& \mathrm{Sr}^{2+}\right)$ while Mg^{2+} ion remain in solution as the solubility product of MgCO_{3} is very high.

Group VI : ($\left.\mathbf{M g}^{\mathbf{2 +}}, \mathbf{N a}^{+}, \mathbf{K}^{+}\right)$-No Group Reagent

The compounds of $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{K}^{+}\left(\& \mathrm{NH}_{4}{ }^{+}\right)$are water soluble. There is no common reagent that can precipitate them together. They are tested individually. $\mathrm{NH}_{4}{ }^{+}$is tested in the
preliminary tests itself or in the beginning to avoid the confusion which may occur by the addition of different salt solutions containing NH_{4} during the cation separation in to groups.

Groups	Radicals of the group	Group reagents	Salts precipitated	Colours of ppt
First group	Pb^{2+}	Dil.HCl	PbCl_{2}	White
Second group	$\mathrm{Pb}^{2+} \& \mathrm{Cu}^{2+}$	$\mathrm{H}_{2} \mathrm{~S}$ in acidic medium of HCl	PbS,CuS	Black
Third group	$\begin{gathered} \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Al}^{3+} \\ \& \mathrm{Mn}^{2+} \end{gathered}$	$\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$	$\begin{aligned} & \mathrm{Fe}(\mathrm{OH})_{2}, \\ & \mathrm{Fe}(\mathrm{OH})_{3} \\ & \mathrm{Al}(\mathrm{OH})_{3}, \\ & \mathrm{Mn}(\mathrm{OH})_{2} \end{aligned}$	$\mathrm{Fe}(\mathrm{OH})_{2}$-Dirty green, $\mathrm{Fe}(\mathrm{OH})_{3}$-Reddish brown $\mathrm{Al}(\mathrm{OH})_{3}$, -white gelatinous $\mathrm{Mn}(\mathrm{OH})_{2}$-Buff
Fourth group	$\begin{aligned} & \mathrm{Ni}^{2+}, \mathrm{Co}^{2+} \\ & \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+} \\ & \hline \end{aligned}$	$\mathrm{H}_{2} \mathrm{~S}$ in alkaline medium of $\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$	NiS, CoS MnS,ZnS	NiS \& CoS -Black MnS- Pink(Buff) ZnS - White or grey
Fifth group	$\mathrm{Ba}^{2+} \mathrm{Ca}^{2+}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$	$\begin{aligned} & \mathrm{BaCO}_{3} \\ & \mathrm{CaCO}_{3} \end{aligned}$	$\mathrm{BaCO}_{3} \& \mathrm{CaCO}_{3}$ - white
		No reagent		
Sixth group	$\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$\& K^{+}	For $\mathrm{Mg}^{2+}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ is used in presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{MgNH}_{4} \mathrm{PO}_{4}$	$\mathrm{MgNH}_{4} \mathrm{PO}_{4}$ - White

Identification of acid and basic radicals present in a salt mixture is carried in the semi-micro scale, in which few milligrams or pinch of solid is used for each test. The solution of reagent is added only in drops. The residues are separated from the solution by centrifugation.

Semi-micro qualitative analysis of mixtures involves the following stages

I. Preliminary Tests

II. Identification of Acid radicals (negative radicals) in solution.
a) Preparation of sodium carbonate extract or prepared solution (P.S.) for testing the presence of an acid radical.
b) Confirmatory test for acid radical.
III. Identification of Basic radicals (positive radicals) in solution.
a) Preparation of original solution (O.S.)
b) Separation of basic radicals in to groups using common reagent for each group.
c) Confirmatory test for each basic radical from the group it belongs.
IV. Report

2.Semi - Micro Qualitative Analysis of Inorganic Salt Mixtures

Sl. No.	Tests	Observations	Inference
I PRELIMINARY TESTS			
1. a)	Appearance	Crystalline Amorphous Mixed	Water soluble salts may be present Water insoluble salts may be present Partially water soluble salts may be present.
b)	Colour	Blue Green-Bluish green Yellow Pink Colourless	$\mathbf{C u}^{2+}, \mathbf{C o}^{2+}$ (anhydrous) salts may be present $\mathbf{N i}^{\mathbf{2 +}}, \mathbf{C u}^{\mathbf{2 +}}, \mathbf{F e}^{\mathbf{3 +}}$ salts may be present $\mathbf{F e}^{2+}$, sulphides of metals may be present $\mathrm{Mn}^{2+}, \mathrm{Co}^{2+}$ hydrated salts may be present Coloured salts $\mathbf{N i}^{\mathbf{2 +}}, \mathbf{C u}^{\mathbf{2 +}}, \mathbf{F e}^{\mathbf{3 +}} \mathrm{Mn}^{2+}$ etc. absent \& $\mathrm{NH}_{4}{ }^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ba}^{2+}$, Al^{3+} etc. may be present.
2.	Heat Test: heat the mixture in a dry test-tube \& observe.	a) Decrepitates	Crystalline salts may be present.
		b) Water vapour condenses on cooler part	Compounds with water of crystallization may be present.
		c) Gas evolved	
		i) Colourless gas with ammonia smell.	$\mathbf{N H}_{4}{ }^{+}$salts may be present.
		ii) Colourless gas with smell of rotten eggs.	$\mathbf{S}^{\mathbf{2 -}}$ salts may be present.
		iii) Reddish brown fumes	Br^{-}or NO_{3}-salts may be present.
		iv) Violet vapours \& Blue- black sublimate	\mathbf{I}^{-}salts may be present
		d) A Sublimate - White	$\mathbf{N H 4}{ }^{+}$Salts may be present.
		e) Residue: i) Fusible	Alkali salts like $\mathbf{N a}^{+}, \mathbf{K}^{+}$etc may be present
		ii) Infusible and White both when hot \& cold	$\mathbf{C a}^{\mathbf{2 +}}, \mathbf{B a}^{\mathbf{2 +}}, \mathbf{A l}^{\mathbf{3 +}}, \mathbf{M g}^{\mathbf{2 +}}$ etc may be present.
		Infusible residue and Yellow when hot and white when cold	$\mathbf{Z n}^{2+}$ salts may be present.
		Dark coloured infusible residue	$\mathbf{C u}^{2+}, \mathbf{F e}^{2+}, \mathbf{F e}^{3+}, \mathbf{M n}^{2+} \& \mathbf{N i}^{2+}$ etc. may be present.
3.	Dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Test Mixture + 5drops of	Gas with brisk effervescence is evolved	$\mathrm{CO}_{3}{ }^{\mathbf{2 -}}$ may be present.

II) Identification of Acid radicals (Negative radicals) in Solution.

Preparation of Sodium Carbonate Extract: About 200 mg of mixture and $400-500 \mathrm{mg}$ of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are added to $5-6 \mathrm{ml}$ of distilled water and is boiled for $5-10 \mathrm{~min}$ in a conical flask with a funnel at the mouth to reduce the loss due to evaporation. The solution is centrifuged and the centrifugate is known as sodium carbonate extract(S.E.) or prepared solution (P.S.) and is used for the identification of Negative radicals.
Note : Carry out C.T. only when radical is present

Sl.No	Tests	Observations	Inference
1	$\begin{aligned} & \text { Test for } \mathrm{SO}_{4}{ }^{2-} \\ & \text { S.E. } 5 \text { drops }+ \text { dil. } \mathrm{HCl} \text { (} 5 \text { drops) } \\ & \text { Boil, cool }+\mathrm{BaCl}_{2} \text { solution(3 drops) } \end{aligned}$	White ppt. insoluble in Dil. HCl even on boiling	SO4 ${ }^{\mathbf{2 -}}$ is present
2	Test for Halides: S.E. (5 drops) + dil. HNO_{3} (5 drops) Boil, $\mathrm{Cool}+\mathrm{AgNO}_{3}$ (1-2 drops) Transfer a little ppt.to a test-tube containing $\mathrm{NH}_{4} \mathrm{OH}$ (5drops) (Carry out respective C.T.s for Halides)	i) White curdy ppt easily soluble in $\mathrm{NH}_{4} \mathrm{OH}$.	Cl^{-}is present.
		i) Pale yellow ppt. sparingly soluble in $\mathrm{NH}_{4} \mathrm{OH}$	Br^{-}is present
		ii) yellow ppt insoluble in $\mathrm{NH}_{4} \mathrm{OH}$.	\mathbf{I}^{-}is present
3	$\begin{aligned} & \text { Test for } \mathrm{NO}_{3}{ }^{-} \\ & \text {S.E. (} 5 \text { drops })+ \text { conc. } \mathrm{HCl}(5 \text { drops }) \\ & +\mathrm{MnCl}_{2} \text { solution(2-3 drops) boil. } \end{aligned}$	Brown colouration	$\mathrm{NO}_{3}{ }^{-}$is present
4	Test for oxalate ($\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$) S.E.+ dil. Acetic acid, boil to remove $\mathrm{CO}_{2}+\mathrm{CaCl}_{2}$ solution \& heat.	White ppt.	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is present
5	Test for Phosphate ($\mathbf{P O}_{4}{ }^{3-}$) S.E. or O.S. (2 drops) + Ammonium molybdate solution excess (78drops) + Conc. HNO_{3} (5 drops)	Canary yellow ppt. in cold or on warming	$\mathrm{PO}_{4}{ }^{3-}$ is present
Confirmatory Tests for Negative ions(Acid Radicals)			
1	C.T. for \mathbf{S}^{2-} (sulphide) ion		
2.	$\begin{aligned} & \text { Mixture }+ \text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}+\text { lead } \\ & \text { acetate } \end{aligned}$	Black ppt.	$\mathbf{S}^{\mathbf{2 -}}$ is present and confirmed.
	C.T. for $\mathrm{SO}_{4}{ }^{2-}$ (Sulphate) ion		
3.	S.E (5 drops)+ dil. acetic acid(5 drops) boil, cool + Lead acetate (3 drops). Transfer little ppt.to a test-tube containing ammonium acetate \& heat.	White ppt. soluble in hot ammonium acetate	$\mathbf{S O}_{4}{ }^{2-}$ is present \& confirmed
	C.T. for Cl^{-}(Chloride) ion		
4.	Mixture + solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a test tube, heat gently. Pass the brown vapours in to a test tube containing $\mathrm{NH}_{4} \mathrm{OH}$ + Acetic acid + lead acetate solution.	Reddish brown vapours give yellow ppt with lead acetate.	Cl^{-}is present \& confirmed
5.	Mix. $+\mathrm{MnO}_{2}$ in a dry test tube + Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ \& Heat gently.	Yellowish green gas turns litmus paper red \& then bleaches it.	Cl^{-}is present \& Confirmed.
	C.T.for Br^{-}(Bromide) ion :		
6.	Mix. $+\mathrm{MnO}_{2}$ in a dry test tube + Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} \&$ Heat gently.	Reddish brown fumes of bromine evolved	$\mathbf{B r}^{-}$is present \& confirmed.

[^0]
III) Identification of Positive Ions (Basic radicals)

Preparation of a solution for cation analysis

Solution used for cation analysis is called original solution. For the preparation of original solution (O.S.) the selection of the suitable solvent is necessary. This may be done by choosing one of the following reagents in the order given -
a) Dist.Water b) Dil. $\mathbf{H C l}$
c) Conc. HCl
d) Conc. HNO_{3} d) Aquaregia(1:3:: Conc. $\left.\mathrm{HNO}_{3}: \mathrm{HCl}\right)$.
A) Solubility Test:

Solubility of the mixture may be tried with reagents first in cold; if not soluble then contents should be heated.

Sl.No.	Tests	Observations	Inference		
1	Mix.+ Dist.H2O,heat	Soluble	$\begin{array}{l}\text { Water soluble compounds present \& } \\ \\ \end{array}$		
O.S. is prepared in dist. Water.				$]$	Mix.+ Dil.HCl
:---					

Preparation of original solution(O.S.):

The original solution is prepared by dissolving 100 mg of mixture in 5 ml of------- (Solvent) taken in a beaker in cold/hot condition. (Centrifuge if necessary). This solution is called original solution (O.S.) and used for the identification of positive radicals.

NOTE:

1. If the mixture is containing $\mathrm{CO}_{3}{ }^{2-}$ as one of the -ve radicals, prepare original solution in minimum quantity of dil. HCl , boil to expel CO_{2}, cool and dilute with distilled water.
2. If the mixture is containing $\mathbf{S}^{\mathbf{2 -}}$ or $\mathbf{B O}_{3}{ }^{3-}$ as one of the -ve radicals, prepare original solution by dissolving the mixture in minimum quantity of conc. $\mathrm{HCl} \&$ evaporating to dryness repeatedly in an evaporating dish, cooling and then extracting with dist.water or dil. HCl .
3. If $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is present in the mixture, then prepare the original solution by dissolving 100 mg of mixture in $1-2 \mathrm{ml}$ aquaregia $\left(1.5 \mathrm{ml}\right.$ conc. $\mathrm{HCl}+0.5 \mathrm{ml}$ conc. HNO_{3}) taken in an evaporating dish and evaporate to dryness. The residue is treated with dil. HCl in cold/hot condition. (Centrifuge if necessary). Dilute the solution with distilled water and is use for the identification of positive radicals.
4. When the mixture does not give a clear solution with water, dil. HCl or conc. $\mathrm{HCl} \&$ instead gives voluminous ppt. it indicates Pb^{2+} is present. Then treat the mixture with minimum quantity of Conc. HNO_{3} and evaporate it to dryness and the residue is extracted with dist. water to get O.S.]

Sl.No.	Tests	Observations	Inference
a)	Test for $\mathbf{N H}_{4}{ }^{+}$ Mixture or O.S.(5 drops)+ NaOH(5 drops), Boil \& hold a wet litmus paper at the mouth of test-tube	Gas with ammonia smell having alkaline action on litmus paper \& white dense fumes with glass rod dipped in conc. HCl.	$\mathrm{NH}_{4}{ }^{+}$may be present
b)	C.T. for NH4 ${ }^{+}:$ (If $\mathrm{NH}_{4}{ }^{+}$is present) Mixture or O.S.(5 drops)+ NaOH(5 drops), + NaOH + Nessler's Reagent\#	Brown ppt. or solution	$\mathrm{NH}_{4}{ }^{+}$is present and confirmed
\#Preparation of Nessler's Reagent: 2drops HgCl + KI drop wise till scarlet ppt. formed just redissolves +NaOH excess till alkaline)			

B) SEPARATION OF CATIONS IN TO GROUPS

O.S. + dil.HCl if precipitation, centrifuge.(if No precipitation proceed with next groups)

Ppt.
Group I

O.S. /Centrifugate + dil. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{~S}$ if precipitation, centrifuge.
present

White ppt.Pb^{2+}

Ppt. Group II Present Black ppt. $\begin{aligned} & \mathrm{Pb}^{2+} \& \\ & \mathrm{Cu}^{2+} \end{aligned}$	O.S./Centrifugate (if II group present, boiled off $\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{4} \mathrm{Cl}$ (solid) + $\mathrm{NH}_{4} \mathrm{OH}$ excess if precipitation, centrifuge. [Use the residue for the analysis of group-III \& centrifugate for next groups] \#If phosphate is present follow Table-3			
	Ppt. Group III	O.S./Centr $+\mathrm{H}_{2} \mathrm{~S}$ if prec	gate $+\mathrm{NH}_{4} \mathrm{Cl}($ solid $)$ tation, centrifuge.	${ }_{4} \mathrm{OH}$ excess warm
	Present White gelatinous ppt. $-\mathrm{Al}^{3+}$	Ppt. Group IV Present Black-Ni	O.S./Centrifugate b to small volume +NH excess $+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ centrifuge.	off $\mathbf{H}_{2} \mathbf{S ~ \&}$ concentrate Cl (solid) $+\mathrm{NH}_{4} \mathrm{OH}$ m if precipitation,
	*Dirty green- Fe^{2+} Reddish brown - Fe^{3+} Buff-Mn ${ }^{2+}$	$\& \mathrm{Co}^{2}$ Grey/white $-\mathrm{Zn}^{2+}$ Buff /Pink- Mn^{2+}	Ppt. Group V Present White ppt.- $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}$	O.S./Centrifugate: Evaporate to dryness. Residue obtained . Group VI $\mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Na}^{+}$present

(Very important note: If $* \mathrm{Fe}^{2+}$ is present \& dirty green ppt. obtained, in III group then it is oxidized completely to Fe^{3+} by boiling the O.S. with few drops Conc. HNO_{3} before going to IV group then add $\mathrm{NH}_{4} \mathrm{Cl}$ (solid) $+\mathrm{NH}_{4} \mathrm{OH} \&$ centrifuge $)$

Note:

1. Once the ppt. is obtained in a group, entire O.S. is used to precipitate the radicals completely by adding the group reagents and centrifugation. The residue is analysed in accordance with the particular group and the centrifugate is used for next group analysis.
2. To eliminate II\& IV group radicals completely, pass $\mathrm{H}_{2} \mathrm{~S}$ repeatedly to the hot centrifugate (2-3 times).

Table - 1 Analysis of Group I($\mathbf{P b}^{\mathbf{2 +}}$)

White ppt. - $\mathbf{P b}^{2+}$

Boil the white ppt. with 2-3 ml of distilled water and the soln. tested as follows.

Sl.No.	Tests	Observations	Inference
1	C.T. for Pb^{2+}		
	Solution $+\mathrm{K}_{2} \mathrm{CrO}_{4}$	Yellow ppt.	$\mathbf{P b}^{\mathbf{2 +}}$ is present and confirmed
	Solution + KI Above yellow ppt.+ $\mathrm{H}_{2} \mathrm{O}$, Heat to get clear soln. Cool \& observe.	Yellow ppt. Golden yellow flakes	$\mathbf{P b}^{\mathbf{2 +}}$ is present and confirmed

Table - 2 Analysis of Group $\mathbf{I I}\left(\mathbf{P b}^{2+} \& \mathbf{C u}^{2+}\right)$

Black ppt.- $\mathrm{Pb}^{\mathbf{2 +}}$ or $\mathrm{Cu}^{\mathbf{2 +}}$			
Treat the ppt. with Dil. HNO_{3} (or a drop of Conc. HNO_{3}) and heat for 2-3min with stirring. Colourless solution - $\mathbf{P b}^{\mathbf{2 +}} \quad$ Blue coloured solution $-\mathbf{C u}^{\mathbf{2 +}}$			
Sl.No.	Tests	Observations	Inference
1	C.T. for $\mathbf{P b}^{\mathbf{2 +}}$		
	Colourless Solution+ $\mathrm{K}_{2} \mathrm{CrO}_{4}$	Yellow ppt.	$\mathbf{P b}^{\mathbf{2 +}}$ is present and confirmed
	Colourless Solution+ KI Above yellow ppt. $+\mathrm{H}_{2} \mathrm{O}$ Heat to get clear soln. Cool \& observe.	Yellow ppt. Golden yellow flakes	$\mathbf{P b}^{\mathbf{2 +}}$ is present and confirmed
2	C.T. for $\mathbf{C u}^{\mathbf{2 +}}$		
	Blue Solution+ $\mathrm{NH}_{4} \mathrm{OH}$	Bluish white ppt. changes to Deep blue solution	$\mathbf{C u}^{2+}$ is present and confirmed
	Blue Solution + Acetic acid + Potassium ferrocyanide	Reddish brown ppt. (Chocolate colour ppt.)	$\mathbf{C u}^{2+}$ is present and confirmed
	Blue Solution+ KI	Brown ppt.	$\mathbf{C u}^{\mathbf{2 +}}$ is confirmed

Table- 3 (Phosphate separation- Basic acetate method)

Phosphate radical is not decomposed by heating with mineral acids, it remains as soluble salt in acidic medium but forms insoluble phosphates with cations in alkaline medium. hence must be removed before proceeding to III group onwards as the separation of cations is carried out in alkaline medium by $\mathrm{NH}_{4} \mathrm{Cl} \& \mathrm{NH}_{4} \mathrm{OH}$. Phosphate is removed by basic acetate method as follows.

If Group II is present, take the centrifugate from Group II and boil to remove $\mathrm{H}_{2} \mathrm{~S}$ completely (test with lead acetate paper). If GroupI \& II are absent then take original solution directly.
If Fe^{2+} is present oxidize it by boiling with 4-5 drops of conc. HNO_{3} and use O.S. / Centrifugate for phosphate separation.
O.S. / Centrifugate : Add $0.5 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ \& excess of $\mathrm{NH}_{4} \mathrm{OH}$ till precipitate obtained is dissolved in minimum amount of dilute acetic acid. Add about 1 cc of saturated ammonium acetate. Precipitate obtained at this stage contains phosphates of III group. Centrifuge the solution and use the residue for the analysis of Group III. The centrifugate contains phosphates of IV,Vand VI groups. The phosphate in the centrifugate is removed by adding excess of neutral chloride to precipitate ferric phosphate and centrifuge. The centrifugate if yellow is treated with $\mathrm{NH}_{4} \mathrm{OH}$ to precipitate iron as ferric hydroxide and reject the ppt. The centrifugate is used to test for IV,V \& VI group radicals.

Table-4 Analysis of Group III($\left.\mathbf{A l}^{\mathbf{3 +}}, \mathrm{Fe}^{\mathbf{2 +}}, \mathrm{Fe}^{\mathbf{3 +}}, \mathbf{M n}^{\mathbf{2 +}}\right)$			
White gelatinous ppt. - $\mathbf{A l}^{\mathbf{3 +}}$, Dirty green ppt.- $\mathbf{F e}^{2+}$, Reddish brown ppt.- $\mathbf{F e}^{\mathbf{3 +}}$ White ppt.turning brown or buff ppt. $\mathbf{- M n}^{\mathbf{2 +}}$ Boil to dissolve the ppt. in $1-2 \mathrm{ml}$ of dilute HCl and test the solution as follows.			
Sl.No	Tests	Observations	Inference
1	C.T. For Al ${ }^{3+}$		
2	Solution + pinch of solid $\mathrm{NH}_{4} \mathrm{Cl}$, Boil.	White gelatinous ppt.	$\mathbf{A l}^{\mathbf{3 +}}$ is present \& confirmed
	Solution $+2 \%$ Aluminon solution	Red colour	$\mathbf{A l}^{\mathbf{3 +}}$ is present \& confirmed
	C.T. For Fe^{2+}		
	$\begin{aligned} & \text { Solution + conc. } \mathrm{HNO}_{3} \\ & \text { boil,cool + KCNS } \end{aligned}$	Blood red colouration	$\mathbf{F e}^{\mathbf{2 +}}$ is present and confirmed.
	Solution + Potassium ferricyanide	Dark (Turnbull) Blue colour ppt.	$\mathbf{F e}^{\mathbf{2 +}}$ is present and confirmed
	Solution + Potassium ferrocyanide	White ppt. rapidly turns blue	$\mathbf{F e}^{2+}$ is present and confirmed
3	C.T. For Fe^{3+}		
	Solution + KCNS	Blood red colouration	Fe^{3+} is present and confirmed
	Solution + Potassium ferricyanide	No ppt.(brown colouration)	Fe^{3+} is present and confirmed
	Solution + Potassium ferrocyanide	Deep(Prussian) blue ppt.	Fe^{3+} is present and confirmed

4

C.T. for $\mathbf{M n}^{2+}$
Solution $+\mathrm{PbO}_{2}$ excess $+1-2 \mathrm{ml}$

> Violet colour to the supernatant liquid
$\mathbf{M n}^{\mathbf{2 +}}$ is present and confirmed

Table- 5 Analysis of Group IV($\left.\mathbf{N i}^{\mathbf{2 +}}, \mathbf{C o}^{\mathbf{2 +}}, \mathbf{Z n}^{\mathbf{2 +}}, \mathbf{M n} \mathbf{M n}^{\mathbf{2 +}}\right)$

	Black ppt.- $\mathbf{N i}^{\mathbf{2 +}}$ or $\mathbf{C o}^{\mathbf{2 +}}$White or grey or cement colured - ppt.- $\mathbf{Z n}^{2+}$, Buff coloured ppt, $-\mathbf{M n}^{2+}$Boil the ppt. with dil. HCl to dissolve and test the solution obtained as follows.		
Sl.No.	Tests	Observations	Inference
1	C.T. for $\mathbf{N i}^{\mathbf{2}}$		
	Solution + dimethyl glyoxime + $\mathrm{NH}_{4} \mathrm{OH}$ till alkaline	Scarlet red coloured ppt.	$\mathbf{N i}^{\mathbf{2 +}}$ is present and confirmed
2	C.T. for Co^{2+}		
	Solution + Pinch of $\mathrm{KNO}_{2}+$ acetic acid	Yellow ppt.	$\mathbf{C o}^{2+}$ is present \& confirmed
	Solution + Pinch of solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ \& shake.	Blue colouration	$\mathbf{C o}^{2+}$ is present \& confirmed
	Solution + isoamyl alcohol + Pinch of solid $\mathrm{NH}_{4} \mathrm{SCN}$ \& shake.	Blue colouration to alcohol layer	$\mathbf{C o}^{2+}$ is present \& confirmed
3	C.T. for Mn ${ }^{\text {2+ }}$		
	Solution $+\mathrm{PbO}_{2}$ excess $+1-2 \mathrm{ml}$ conc. HNO_{3} Boil for few minutes \& add some water, cool and allow to stand for few minutes \& observe the colour of supernatant liquid.	Violet colour to the supernatant liquid	$\mathbf{M n}^{\mathbf{2 +}}$ is present \&confirmed
4	C.T. for $\mathbf{Z n}^{\mathbf{2}}$		
	Solution +NaOH	White ppt. soluble in excess of NaOH .	$\mathbf{Z n}^{\mathbf{2 +}}$ is present and confirmed.
	Solution + acetic acid till acidic + Potassium ferrocyanide	White ppt.	$\mathbf{Z n}^{\mathbf{2 +}}$ is present and confirmed

Table- 6 Analysis of Group $\mathrm{V}\left(\mathrm{Ba}^{\mathbf{2 +}}, \mathrm{Ca}^{\mathbf{2 +}}\right)$

White ppt. - $\mathbf{B a}^{2+}$ or $\mathbf{C a}^{2+}$ Use a part of ppt. for flame test \& Boil to dissolve remaining p			
Sl.No.	Tests	Observations	Inference
	Solution+ Potassium chromate soln.	Yellow ppt. No Yellow ppt.	$\mathbf{B a}^{2+}$ is present. $\mathbf{C a}^{2+}$ is present.
1	C.T. for $\mathrm{Ba}^{\mathbf{2 +}}$		
	Flame Test: White ppt.+ Conc. HCl to make a paste \& dip a clean Platinum wire in it \& heat by holding it to the edge of	Yellowish or Apple green colour to the flame	$\mathbf{B a}^{\mathbf{2 +}}$ is present and confirmed

	non luminous flame		
2	C.T. for Ca^{2+}		White ppt.
	Solution + NH4OH till alkaline + Ammonium oxalate soln.	$\mathbf{C a}^{2+}$ is present and confirmed	
	Flame Test Dissolve the above white ppt. in Conc. HCl to make a paste \& dip a clean Platinum wire in it \& heat by holding it to the edge of non- luminous flame	Bright red colouration to the flame	$\mathbf{C a}^{2+}$ is present and confirmed.

Table- 7 Analysis of Group $\mathrm{VI}\left(\mathrm{Mg}^{\mathbf{2 +}}, \mathrm{K}^{+} \& \mathrm{Na}^{+}\right)$
Evaporate the centrifugate to dryness in an evaporating dish. Use a part of residue for flame test \& Dissolve remaining residue in a minimum quantity of distilled water \& test the solution for $\mathrm{Mg}^{2+}, \mathrm{K}^{+}$ and Na^{+}as below.

Sl.No.	Tests	Observations	Inference
	Solution+ $\mathrm{NH}_{4} \mathrm{OH}+$ sodium hydrogen phosphate solution with a glass rod. scratch inside the test-tube.	White crystalline ppt. No ppt.	$\mathbf{M g}^{2+}$ is present $\mathbf{N a}^{+}$or \mathbf{K}^{+}present
1	C.T. for $\mathbf{M g}^{\mathbf{2 +}}$		
	Hypoiodite test : I_{2} in KI solution +NaOH drop wise till to get yellow colour + test solution.	Reddish brown colour or ppt.	$\mathbf{M g}^{\mathbf{2 +}}$ is present and confirmed
	Solution + Magneson soln.+NaOH	Blue colour or ppt.	$\mathbf{M g}^{\mathbf{2 +}}$ is present and confirmed
2	C.T.for K^{+}		
	Solution + sodium cobalti nitrite (0.5 drops cobalt nitrate solution + pinch $(0.1 \mathrm{~g})$ of NaNO_{2} solid +3 drops of acetic acid)	Yellow ppt.	\mathbf{K}^{+}is present and confirmed.
	```Solution (5 drops)+Picric acid (3-4 drops)```	Yellow ppt.	$\mathbf{K}^{+}$is present and confirmed.
	Flame test Treat the residue with 1 drop Conc. $\mathrm{HCl} \&$ perform flame test	Violet colour imparted to the flame	$\mathbf{K}^{+}$is present and confirmed.
	C.T. for $\mathbf{N a}^{+}$		
3	Solution +Potassium pyroantimonate $\left(\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right)$, scratch the inside of the test-tube with glass rod.	White ppt.	$\mathbf{N a}^{+}$is present and confirmed
	Flame test Treat the residue with 1 drop Conc. $\mathrm{HCl} \&$ perform flame test	Golden yellow colour imparted to the flame colour	$\mathbf{N a}^{+}$is present and confirmed

Therefore the positive radicals found are 1) --------, 2)--------.
Conclusion: Hence the given inorganic mixture contains

Acid radicals		
Basic radicals		

## 3. Determination of Dissolved Oxygen present in water by Winkler's method

Aim: To determine the dissolved oxygen present in water by Winkler's method.
Principle: Presence of dissolved oxygen is essential to maintain the higher forms of biological life in water. Low oxygen in water can kill fish and other organisms present in water.
When manganous sulphate is added to the water sample containing alkaline potassium iodide, manganese hydroxide is formed. This is oxidized to basic manganic oxide by dissolved oxygen(DO) present in the water sample. When sulphuric acid is added basic manganic oxide liberates iodine, which is equivalent to DO originally present in the water sample. The liberated iodine is titrated with a standard sodium thiosulphate solution using starch as indicator.

## Chemicals required:

1. Manganous sulfate solution $\left(48 \mathrm{~g}\right.$ of $\mathrm{MnSO}_{4}$ in 100 ml of $\left.\mathrm{H}_{2} \mathrm{O}\right)$
2. Alkaline potassium iodide ( $36 \mathrm{~g} \mathrm{NaOH} \& 10 \mathrm{~g} \mathrm{KI}$ in 100 ml of $\mathrm{H}_{2} \mathrm{O}$ )
3. 0.025 N sodium thiosulphate solution $\left(1.550 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right.$ in 250 ml of $\left.\mathrm{H}_{2} \mathrm{O}\right)$
4. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, Starch indicator

## Procedure:

Collect the water sample in $200 / 250 \mathrm{ml}$ bottle taking care to avoid contact with air. The bottle should be completely filled. Add 1.0 ml of manganous sulfate solution by pipette, dipping the end below the surface. Add 1.0 ml alkaline potassium iodide solution. Insert the stopper and mix thoroughly by shaking. After precipitate has settled, add 2.0 ml Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Dissolve the precipitate completely by shaking and titrate with sodium thiosulphate using starch as an indicator. Record the ml of titrant used.

## Chemical Reactions

$$
\begin{gathered}
\mathrm{MnSO}_{4} \rightleftharpoons \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{2-} \\
\mathrm{Alk} \mathrm{KI} \rightleftharpoons \mathrm{~K}^{+}+\mathrm{I}^{-}+\mathrm{OH}^{-} \\
\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \\
\longrightarrow \underset{\substack{\text { white ppt. indicates oxygen absent } \\
\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-}+1 / 2 \mathrm{O}_{2}}}{\mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}} \begin{array}{c}
\text { Brown ppt. indicates oxygen present }
\end{array}
\end{gathered}
$$

This refers to fixation phenomenon

$$
\begin{array}{r}
\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{array}
$$

## Observations:

1. Solution in burette $\quad=0.025 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ solution
2. Solution in Bottle $=$ Reaction mixture
3. Indicator $=$ Starch solution
4. Colour change $=$ Blue to colourless near the end point.
5. Burette readings $=-----m l$

## Calculations

Oxygen in $\mathrm{mg} /$ litre $=\frac{\mathrm{V}_{1}-\mathrm{V}_{2} \times \text { normality of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}(0.025) \times 8 \times 1000}{\text { Volume of water sample }(200)}$
Oxygen in ppm $=0.8 \times$ B.R. $\times$ normality of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=$

## 4. Determination of Chemical oxygen demand (COD)

Aim:To determine the Chemical oxygen demand(COD) of given water sample.
Chemical oxygen demand test is widely used for measuring the pollution strength of waste water and it is the amount of oxygen used in the oxidation of organic matter. All organic compounds with a few exceptions can be oxidized to carbon dioxide and water by the action of strong oxidizing agents like sulphuric acid.
Principal : When the waste water sample is refluxed with known excess of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in a $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution in presence of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ (as catalyst) and $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ (to eliminate interferences due to chloride) the organic matter of the sample is oxidized to $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and $\mathrm{NH}_{3}$. The excess dichromate remaining unreacted, in the solution is titrated with a standard solution of FAS. Similar procedure is followed for blank titration using the same amount of distilled water instead of waste water.

## Chemicals required:

1. Standard potassium dichromate solution ( $0.25 \mathrm{~N}-3.0625 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 250 ml )
2. Standard FAS solution ( $0.25 \mathrm{~N}-24.5 \mathrm{~g}$ FAS in 250 ml )
3. Sulphuric acid ( $1 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{SO}_{4}+1 \mathrm{~g} \mathrm{Hg}_{2} \mathrm{SO}_{4}$ ), Ferroin indicator

## Procedure: Standardisation of FAS solution:

50 ml of water sample is taken in a round bottom flask and kept in the water bath. 75 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ containing 1 g each of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ and $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ is added carefully, with shaking after each addition. 25 ml of $0.25 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is added to it with a pipette. The water condenser is attached to the flask and the contents are refluxed for 2 hours, cooled and washed the condenser with distilled water. Transferred the contents to a 500 ml conical flask and diluted to 300 ml , titrated against the standard 0.25 N ferrous ammonium sulphate solution using ferroin indicator till the colour changes from orange to greenish. The burette reading is noted as $\mathrm{V}_{1} \mathrm{ml}$.

Blank titration: The above procedure is repeated with 50 ml of distilled water instead of water sample and the B.R. is noted as $V_{2} \mathrm{ml}$.

## Chemical Reactions

$$
\begin{aligned}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} & \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}] \\
\text { Organic matter }(\mathrm{C} \& \mathrm{H})+3[\mathrm{O}] & \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{FeSO}_{4}+4 \mathrm{H}_{2} \mathrm{SO}_{4}+3[\mathrm{O}] & \longrightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## Observations:

1. Solution in burette $\quad=0.25 \mathrm{~N}$ FAS solution
2. Solution in conical flask $=$ Reaction mixture
3. Indicator $=$ Ferroin
4. Colour change = orange red to greenish.
5. Burette readings
i) Blank titre reading $\mathrm{V}_{1}=-----\mathrm{ml}$
ii) Main titre reading $V_{2}=-----m l$

## Calculations:

$\mathrm{COD}\left(\mathrm{mg} /\right.$ litre or $\left.\mathrm{dm}^{3}\right) \mathrm{ppm}=\frac{\mathrm{V}_{1}-\mathrm{V}_{2} \times \text { normality of } \mathrm{FAS} \times 8 \times 1000}{\text { Volume of water sample }(50)}$
5. Reactions involved in the test of acidic $\&$ basic radicals

Reactions acidic radicals(Anion) $\mathrm{X}=\mathrm{CO}_{3}{ }^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$
Carbonate $\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{MCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{MSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \quad$ (\$olourless gas with effervescence)


## Sulphide( $\mathbf{S}^{2-}$ )



Chloride ( $\mathrm{Cl}^{-}$)



$\mathrm{MCl}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{M}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \uparrow$
Greenish-yellow gas

## Chromyl Chloride Test:

$\mathrm{MCl}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2} \uparrow+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
Chromyl Chloride Test:
$2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{M}_{2} \mathrm{CrO}_{4}+2 \mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{M}_{2} \mathrm{CrO}_{4}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \longrightarrow \mathrm{PbCrO}_{4} \downarrow+2 \mathrm{CH}_{3} \mathrm{COONH}_{4}$ yellow ppt.(Lead chromate)

## Bromide( $\mathrm{Br}^{-}$)



## Iodide( $\mathbf{I}^{-}$)



Nitrate ( $\mathrm{NO}_{3}{ }^{-}$)


Brown ring test


Sulphate ( $\mathrm{SO}_{4}{ }^{2-}$ )




## Oxalate ( $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ )



## Phosphate ( $\mathrm{PO}_{4}{ }^{3-}$ )



$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{MoO}_{4}+12 \mathrm{MoO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{MoO}_{4} .12 \mathrm{MoO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$
canary yellow ppt.(ammonium phospho molybdate)
$\mathrm{M}_{3} \mathrm{PO}_{4}+\mathrm{MgSO}_{4}+\mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \mathrm{Mg} \mathrm{NH}_{4} \mathrm{PO} \downarrow+\mathrm{MCl}$ white crystalline ppt.(Magnesium ammonium phosphate)

## Reactions for basic radicals (cations)

$\mathrm{M}=\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{+3}, \mathrm{Mn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$and $\mathrm{NH}_{4}^{+}$.

## Ammonium radical - $\mathbf{N H}_{4}{ }^{+}$




Nessler's reagent [pot.tetra iodo mercurate (II)] Brown ppt. [Mercury (II)amido - iodide]

## Group I. $\mathbf{P b}^{\mathbf{2 +}} \operatorname{Lead}\left(\mathbf{P b}^{\mathbf{2 +}}\right.$ )



Group II $\mathbf{P b}^{\mathbf{2 +}}, \mathbf{C u}^{\mathbf{2 +}}$
Lead( $\mathbf{P b}^{\mathbf{2 +}}$ )
$\mathrm{PbX}+\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { dilHCl }} \underset{\substack{\text { Black ppt. }}}{\mathrm{PbS} \downarrow+\mathrm{HX}}$


Copper $\mathbf{C u}^{2+}$
$\mathrm{CuX}+\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { dilHCl }} \underset{\text { Black ppt. }}{\mathrm{CuS} \downarrow+\mathrm{HX}}$

$\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \longrightarrow \begin{gathered}\text { deep blue solution( diammine copper(II) complex) }\end{gathered}\left[\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{2}\right] \mathrm{X}$
$2 \mathrm{CuX}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow \mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow+4 \mathrm{KX}$
chocholate brown ppt.(copper hexacyanoferrate(II) complex)
$2 \mathrm{CuX}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow+\mathrm{I}_{2}+\mathrm{KX}$
brown ppt.(cuprous iodide)
Group III $\mathrm{Al}^{3+}, \mathrm{Fe}^{\mathbf{2 +}}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{2+}$
(Aluminum) $\mathrm{Al}^{3+}$

| $\mathrm{AlX}+6 \mathrm{NH}_{4} \mathrm{OH}$ |
| :--- | :--- |
|  |
| $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH}$ |$\longrightarrow$| $\mathrm{NH}_{4} \mathrm{Cl}$ |
| :---: | | $2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{X}$ |
| :---: |
| White gelatinous ppt. |$\quad \mathrm{X}=\mathrm{SO}_{4}{ }^{2-} \mathrm{Cl}^{-}$

(Ferrous ion) $\mathrm{Fe}^{\mathbf{2 +}}$
FeX $+6 \mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \underset{\text { Dirty green ppt.(Ferrous hydroxide) }}{2 \mathrm{Fe}(\mathrm{OH})_{2} \downarrow+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{X}} \quad \mathrm{X}=\mathrm{SO}_{4}{ }^{2-} \mathrm{Cl}^{-}$

$\underset{\text { potassium ferrocyanide }}{\mathrm{FeX}}+\underset{\text { white ppt. turns to blue ppt.(iron hexacyanoferrate(II) complex) }}{\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]} \mathrm{Fe}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow+4 \mathrm{KX}$
(Ferric ion) $\mathrm{Fe}^{3+}$
$\mathrm{FeX}+6 \mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \underset{\substack{\text { Reddish brown ppt.(Ferric hydroxide) }}}{2 \mathrm{Fe}(\mathrm{OH})_{2} \downarrow+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{X}} \quad \mathrm{X}=\mathrm{SO}_{4}{ }^{2-} \mathrm{Cl}^{-}$
$\mathrm{FeX}+3 \mathrm{KSCN} \longrightarrow \mathrm{Fe}(\mathrm{SCN})_{3}+\mathrm{KX}$
Manganese( $\mathbf{M n}^{2+}$ )
$\mathrm{MnX}+2 \mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \underset{\text { white pp. }}{\mathrm{Mn}(\mathrm{OH})_{2} \downarrow+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{X}+2 \mathrm{H}_{2} \mathrm{O}}$

white ppt. brown ppt.


Group IV $\mathbf{N i}^{\mathbf{2 +}}, \mathbf{C o}^{\mathbf{2 +}}, \mathbf{M n}^{2+}, \mathbf{Z n}^{\mathbf{2 +}}$
$\operatorname{Nickel}\left(\mathbf{N i}^{2+}\right)$


## Cobalt ( $\mathbf{C o}^{2+}$ )

$\mathrm{CoX}_{2}+\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \underset{\substack{\text { black ppt (cobalt sulphide) }}}{\mathrm{CoS}} \downarrow+2 \mathrm{NH}_{4} \mathrm{X}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CoX}+2 \mathrm{KNO}_{2} \longrightarrow \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}+\mathrm{KX}$
$\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}+4 \mathrm{KNO}_{2} \longrightarrow \underset{\substack{\text { potassiumhexanitiritocobaltate(II) }}}{\mathrm{K} 4}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$
$\mathrm{K}_{4}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]+2 \mathrm{CH}_{3} \mathrm{COOH}+(\mathrm{O})$ air $\longrightarrow 2 \mathrm{~K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \quad \downarrow+2 \mathrm{CH}_{3} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O}$ pot.cobalti nitrite


## Sodium ( $\mathbf{N a}^{+}$)

$2 \mathrm{NaX}+\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \downarrow_{+} 2 \mathrm{KX}$
potassium pyroantimonate white ppt. (sodium pyroantimonate)

## Potassium ( $\mathrm{K}^{+}$)

$3 \mathrm{KX}+\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \longrightarrow \mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]+2 \mathrm{NaX}$ sod. hexanitritocobaltate(III) yellow ppt. pot hexanitritocobaltate(III)
(sodium cobalt nitrite)
$\mathrm{KX}+\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OK} \downarrow+\mathrm{HX}$
Picric acid Pot.picrate (yellow ppt.)

## Reference Books

1. Vogel's Qualitative Inorganic Analysis ( $7^{\text {th }}$ edn.)- revised by G.Svehla
2. Advanced Inorganic Analysis -Dr.Subhash Rastogi, Dr.Satish Agarwala\& Dr.Keemti Lal
3. A Text book of Analytical Chemistry -H.D.Tayal \& A.K. Manglik
4. Practical Chemistry -Pandey,Bajpai \& Giri
5. Textbook of Chemical Analysis-Raju \& Mathur
6. Analytical Chemistry-Dhrubha Charan Dash
7. Lab Experiments in Organic Chemistry -Arun. Sethi, New Age International Ltd. New Delhi. 2006
B.Sc. V Sem: Paper - IQULITATIVE ANALYSIS OF SOLID-SOLID ORGANIC BINARY MIXTURE
Total No of Hours/Week : 04 Hours
Total No of Hours : 52 Hours IA :10 Marks

## CONTENTS

Qualitative analysis of solid - solid organic mixtures: Identification of nature and separation of mixture (in semi micro scale). Characterization of any one separated compound through Preliminary tests, Element test, Physical constant, Functional Group test and preparation of suitable derivative and its physical constant.

Acids: Salicylic, Cinnamic, Phthalic and Anthranilic acid.
Phenol: $\alpha$-naphthol, $\beta$-naphthol.
Base: p-toluidine, m-nitroaniline and p-nitroaniline.
Neutral: Naphthalene, Acetanilide, Diphenyl, Benzamide, Benzophenone and m-dinitrobenzene.

## Instructions

In a batch of ten students, not more than two students should get the same mixture in the practical examination. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. During practical examination chart may be referred whenever necessary.

DISTRIBUTION OF MARKS

Nature and separation	$2+3$
Prelimanary tests	02
Element test	04
Physical constant	03
Functional Group test	04
Identification and Structure	03
Preparation of derivative	03
Physical constant of derivative	03
Systematic Presentation	03
Journal	05
Viva voce	05
	$\mathbf{4 0}$

## SEPARATION OF SOLID-SOLID BINARY ORGANIC MIXTURE AND SPOTTING (QULITATIVE ANALYSIS) OF ORGANIC COMPOUND

## INTRODUCTION

The purpose of organic qualitative analysis is to spot a given organic substance and to substantiate its nature by performing a set of reaction/s with it. The whole process of this analysis is based on the two important concepts, namely, Homologous series and Functional group. A compound belonging to a particular class will exhibit characteristic reactions of the atoms or group of atoms present in it. Compounds of a particular homologous series show a similarity in chemical reactions and gradation in physical properties.

The process of identifying unknown compound/s is analogous to solving a puzzle. An organic chemist can often identify a sample in a very short time by performing solubility tests and some simple tests of functional group/s. Millions of known organic compounds are easily and effectively classified into a limited number of groups based on their functional group. Part of the challenge of organic qualitative analysis lays in borderline cases and possible exceptions to the general rules for many of the tests. One must work with an open, unprejudiced mind, ready to make, and test, preparing derivatives this lead to success in finding the identities of unknown compound under investigation. Thus obtained information will help to determine the structure of an unknown compound. This is the way things were done prior to the advancement of modern instrumentation like Spectroscopic methods advanced chemical technique/s using sophisticated equipments.

Five basic areas of experimental inquiry are useful for identifying an unknown compound. One must develop an understanding for what information can be obtained from each of them.

## The five areas of inquiry are;

(I) Physical properties (II) Classification by solubility (III) Elemental analysis by sodium fusion (IV) Classification tests for functional groups (V) Synthesis of solid derivative, and authentication by its M.P.

All the areas of experimental inquiry just listed depend on what can be called the structural theory of organic chemistry. By discovering how compounds act under certain conditions, a chemist can deduce what their structures are. Once you have a large number of characteristics in hand, you can deduce the structure of a compound.

## I. Physical properties

The physical appearance of an unknown will be our first information in the search to discover its identity. Simply knowing that the compound is a solid rather than a liquid at room temperature narrows the search considerably. A few solids have characteristic bright colors that may be of great significance in reaching a final answer. The physical properties of a compound that are of interest in qualitative analysis are its appearance and its melting point or boiling point etc.

## II. Solubility

Solubility tests should be performed on every general unknown because they are quick and reliable and use only a small amount of sample. One can gather valuable information about possible functional groups through the use of the solubility classifications. Five common reagents are used for solubility tests are (1) Water (2) $\mathrm{NaHCO}_{3}$ (3) NaOH (4) HCl , and (5) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Except in the case of water, solubility experiments probe the acid-base properties of organic compounds.

If a compound is an acid, you can obtain a relative measure of its acid strength by testing it against the weak base sodium bicarbonate and the stronger base sodium hydroxide. Naturally, any organic compound that is soluble in water is also likely to be soluble in $\mathrm{NaHCO}_{3}, \mathrm{NaOH}, \mathrm{HCl}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions because these solutions are composed largely of water.

## III. Elemental analysis

Presence of oxygen in organic compound is detected by testing for functional group containing oxygen eg- alcohol $(-\mathrm{OH})$, aldehyde $(-\mathrm{CHO})$, ketone (RCOR), carboxylic acid ( -COOH ), ester ( COOR $)$ and nitro $\left(-\mathrm{NO}_{2}\right)$ etc.

Detection of Carbon and Hydrogen is generally carried in the following way.


## Lassaigne's Test:

Sodium fusion converts halogens to corresponding sodium halides, which are easily detected by silver nitrate. A knowledge of the elemental composition of a substance is useful in planning the identification procedure.

$$
\underset{\substack{\text { Organic compound }}}{\mathbf{C}, \mathbf{H}, \mathbf{S}, \mathbf{N}, \mathbf{X}(\mathbf{c o v a l e n t ~ f o r m s )}+\mathbf{N a}} \longrightarrow \mathbf{N a C N}, \mathbf{N a 2 S ,} \mathbf{N a X} \text { (ionic) }
$$

- Halogen test: Sodium extract is treated with $\mathrm{AgNO}_{3}$ following reactions takes place.
$\mathrm{NaX}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgX}+\mathrm{NaNO}_{3}$

- Sulphur test: $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \longrightarrow \mathrm{PbS}+2 \mathrm{CH}_{3} \mathrm{COONa}$
- Nitrogen test: On treatment sodium extract with freshly prepared $\mathrm{FeSO}_{4}, \mathrm{FeCl}_{3}$ in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ a prussian blue or greenish blue coloration is observed.
$\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \rightarrow \mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}+\mathrm{Na}_{2} \mathrm{SO}_{4} 6 \mathrm{NaCN}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Ferrous amm. sodium
Sulphate ferrocyanide
$\mathrm{Na} 4 \mathrm{Fe}(\mathrm{CN})_{6}+\mathrm{Fe}^{+3} \longrightarrow \mathrm{NaFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+3 \mathrm{Na}^{+}$ Sodium ferriferrocyanide (Prussian blue)


## IV. Functional Groups

The functional groups are detected based on the elements present in the compound. These are categorized as follows;
$\mathbf{C}, \mathbf{H}$, and (O) : This category includes Alcohols, phenols, aldehydes, ketones, carboxylic acids, esters and even hydrocarbons.
$\mathbf{C , H},(\mathbf{O})$ and $\mathbf{N}$ : This category includes Amines, amides, annilides nitro compounds and even bi-functional compounds containing nitro and amino groups of Alcohols, phenols, aldehydes, ketones, carboxylic acids, esters etc.
$\mathbf{C}, \mathbf{H},(\mathbf{O}), \mathbf{N}$ and $\mathbf{S} \quad: \quad$ This category includes thio compounds containing amino, amido, annilido and nitro groups.
 amido, annilido and nitro groups.
$\mathbf{C , H}, \mathbf{( O )}, \mathbf{N}, \mathbf{S}$, and $\mathbf{X}: \quad$ This category includes thio and halogen compounds containing amino, amido, annilido and nitro groups.

## V. Derivative:

After detecting the functional group/s by carrying out confirmative tests, finally the compound under investigation is confirmed by preparing its solid state derivative. Thus formed derivative is confirmed by finding its melting point.

## Solid - Solid type of mixtures

The organic compounds are classified in to the four groups viz., acid, phenol, base and neutral. Organic acids contain carboxylic acid group. Phenols are the class of organic compound where -OH group is directly attached to the benzene nucleus. Organic compounds containing amino $\left(-\mathrm{NH}_{2}\right)$ group are the bases. The rest of the organic compounds containing various functional groups are neutral in nature. Usually the following combination of mixtures of organic compounds is given for the separation.
1] Acid + Base
2] Acid + Neutral
3] Phenol + Base 4] Phenol+ Neutral 5] Base + Neutral 6] Neutral + Neutral (Acid + Phenol combination is usually not given)

After separation of the organic compound from the mixture, the individual compound is systematically analyzed. The process of analysis / identification of an organic compound is called "organic spotting".

## Principles of separation: Solid Mixture:

Generally two components present in the mixture are of different nature. They may differ in their solubility in water, acids, and alkalies or in some common solvents. The separation of two components of the solid mixture is achieved by dissolution of one component in a solvent or a reagent leaving behind the insoluble component which is collected by filtration.

Separation of organic mixture is based on the chemical nature of components like difference in polarities, acidic or basic strength. General method developed for the separation is based on the concept of converting one of the components in to salt which being polar becomes soluble in water. For example, an acid dissolves in sodium bicarbonate solution as it forms its salt sodium benzoate and can be regenerated by neutralization of the solution with hydrochloric acid. Aniline (or bases) forms its salt aniline-hydrochloride \& goes into aqueous solution when treated dilute HCl or dilute sulphuric acid. Acetanilide dissolves in hot water and can be obtained back by evaporation of the solvent.

Compounds differing in acidic strength can be separated by extraction methods. Strong acids form salts with sodium bicarbonate solution whereas the weaker acids do not react with this weak base. So, weakly acidic Phenols dissolve in sodium hydroxide solution but not in sodium bicarbonate. So it is
necessary, at the beginning itself, to find out the nature of the components of a solid-solid binary mixture before starting the actual separation.

Sl.No.	Test	Observation	Inference
1	Mixture $+\mathrm{NaHCO}_{3}$	Partially soluble with   effervescence	One component is   Carboxylic acid.
2.	Mixture +NaOH	Partially Soluble in NaOH	One component is Phenol /   acid.
3.	Mixture +HCl	Partially Soluble in HCl	One component is base   (an amine).

Note: If only one component is detected then the remaining component is neutral.
Systematic analysis of the individual compounds: The two components in their pure forms are now analysed in the following systematic manner.

1. Preliminary tests
2. Identification of nature of the compound
3. Determination of melting point or boiling point.
4. Detection of Elements
5. Detection of functional groups
6. Identification of the compound
7. Confirmation of the compound through preparation of derivative.

## IDENTIFICATION OF NATURE OF SOLID-SOLID BINARY MIXTURES

Take 5 mg of solid mixture in a test tube, add reagents as given below and observe.

Sl.No	Test	Observation	Inference
1	Mixture $+1 \mathrm{cc} \mathrm{NaHCO}_{3}$ solution. Shake well \& filter the above solution, (if soluble)- Residue*   Filtrate + Conc. HCl, cool (add ice)	Effervescence \& Partially soluble Precipitate	One component is Carboxylic acid.   Carboxylic acid is present.
	If above test is negative, perform the following tests.		
2.	*Residue from above solution or Mixture + 1cc NaOH solution. Shake well \& filter the above solution,   Filtrate + Conc. HCl , cool.(add ice)	Partially Soluble in NaOH   Precipitate	One component is Phenol.   Phenol is present.
3.	Mixture + 1cc $\mathrm{HCl}(1: 1)$,   Shake well \& add $\mathrm{H}_{2} \mathrm{O}$ filter the above solution, Filtrate +NaOH cool. (add ice pieces)	Partially Soluble in HCl   Precipitate	One component is base (an amine).   Base (an amine) is present.

If only one component is detected then the remaining component is neutral.
Conclusion: Nature / type of the given binary mixture is $\qquad$
Note: If one component of mixture is soluble both in $\mathrm{NaHCO}_{3}$ and NaOH solutions gives ppt with Conc. HCl , nature of the component is ACID. If it is insoluble in $\mathrm{NaHCO}_{3}$ but soluble only in NaOH and gives ppt with Conc. HCl then nature of the component is PHENOL

## 1. SEPARATION OF THE COMPONENTS OF A BINARY MIXTURE

Follow the scheme according to the type of binary mixture

## SCHEME - I

(ACID + BASE or ACID + NEUTRAL MIXTURE)
Separation of two components when one of the component is acid i.e., given mixture is of the type Acid + Base or Acid + Neutral

Take about $85 \%$ given mixture in a beaker. Add $10 \%$ sodium bicarbonate solution till there is no effervescence. Stir thoroughly with a glass rod and filter. Acidify the filtrate with conc. HCl. Follow below mentioned scheme.


PHENOL + BASE or PHENOL + NEUTRAL MIXTURE
Take the mixture in a beaker. Add $10 \% \mathrm{NaOH}$ solution till alkaline. Stir thoroughly with a glass rod and filter. Acidify the filtrate with conc. HCl. Follow below mentioned scheme.


SCHEME - III

## (BASE + NEUTRAL MIXTURE)

Separation of two components when one of the component is Base i.e., given mixture is of the type $\underline{B a s e}+$ Neutral

Take the mixture in a beaker. Add $1: 1 \mathrm{HCl}$. Stir thoroughly with a glass rod and filter. Add NaOH solution to the filtrate till alkaline and filter. Follow below mentioned scheme.


## QUALITATIVE ANALYSIS OF ORGANIC COMPOUND

I. Preliminary Tests

S.N	TEST	OBSERVATION	INFERENCE
1.	Appearance and Colour	Colourless solids	Acids   Salicylic acid, Phthalic and, Anthranilic acid may be present   Neutral Compounds   Naphthalene, Acetanilide,   Diphenyl, Benzamide,   Benzophenone
		Coloured solids	
		Cream coloured solid   Pink ( or pale brown)   Dark brown   Pale yellow   Turmeric or greenish yellow   Black/dirty green   shining crystals   Cream coloured solid   Pink ( or pale brown)	Cinnamic acid $\beta$-Naphthol   $\alpha$-Naphthol   $m$-dinitrobenzene   $m$-nitroaniline or $p$-nitroaniline may be present   $p$-toluidine may be present   Cinnamic acid   $\beta$-Naphthol
2.	Odour	Pleasant odour   Moth ball smell   Cinnamon like odour   Phenolic odour   Fishy odour   Odour of bitter almonds   No Characteristic odour	Diphenyl may be present   Naphthalene   Cinnamic acid   Naphthols   Amines ( $p$-toluidine, $\quad m$ nitroaniline or $p$-nitroaniline)   $m$-dinitrobenzene   Carboxylic acids ( Except   cinnamic acid)
3.	Beilstien's Test   Heat a loop of copper wire till it does not impart green colour to the flame. Cool, and take substance on loop of copper wire and then heat it.	(a) Burns with sooty flame	Aromatic compounds present
		(b) Burns with nonsooty flame	Aliphatic compounds present
		(c) Green edged flame after the initial sooty flame has vanished	Halogenated compounds present Exception: Urea gives a green flame due to cyanide of copper formed and not due to halogen

Conclusion: The given compound $\qquad$ (Aliphatic / Aromatic)

## SOLUBILITY TEST (IDENTIFICATION OF NATURE OF THE COMPOUND)

II. Solubility Test		
Take a little compound in a test tube and test the solubility in the following solvents.		
a) Compound ( 0.5 g ) + water (1ml) Shake well and test with litmus paper   If insoluble   Compound + water + heat Shake well and test with litmus paper	Soluble in cold water and solution is acidic to litmus. (blue to red)   Sparingly soluble in cold but soluble in hot water and solution is acidic to litmus. (blue to red)   Soluble and the solution is neutral to litmus.	Carboxylic acid (Anthranilic acid) may be present   Carboxylic acids(Phthalic acid, Salicylic acid, Cinnamic acid etc.) may be present   Acetanilide, Benzamide may be present
b) Compound ( 0.5 g ) + $\mathrm{NaHCO}_{3}(1 \mathrm{ml})$ and shake well	Soluble with effervescence	Carboxylic acid is present
c) Compound ( 0.5 g ) +   $\mathbf{N a O H}(1 \mathrm{ml})$ and shake well	*Dissolves in NaOH and $\mathrm{NaHCO}_{3}$ and reprecipitated by adding conc. HCl   Dissolves only in NaOH but not in $\mathrm{NaHCO}_{3}$	Carboxylic acid is present   Naphthols (phenol) present
d) Compound +1:1 HCl and shake well	Soluble and reprecipitated by adding NaOH   Soluble in water \& dil HCl	Bases like amines, -ptoluidine) may be present   Acidic (Anthranilic acid) or neutral(acetanilide)may be present
e) Compound +Conc. $\mathrm{H}_{2} \mathrm{SO}$	Soluble with colour (yellow)   Soluble with red colour   In soluble	Ketones may be present   Cinnamic acid may be present   Aromatic Hydrocarbons may be present
Note: If the given compound is soluble in $\mathrm{H}_{2} \mathrm{O}$ \& acidic to litmus, and it is soluble in $\mathrm{NaHCO}_{3}$ \& NaOH - Acidic   If the given compound is soluble only in $\mathrm{NaOH} \&$ insoluble in $\mathrm{NaHCO}_{3}$ \& reprecipitated by adding Con. HCl - Phenol   If the given compound is soluble only in $\mathrm{HCl} \&$ reprecipitated by adding $\mathrm{NaOH} \&$ insoluble in $\mathrm{NaOH} \& \mathrm{NaHCO}_{3}-$ Basic.   If the given compound is soluble in $\mathrm{H}_{2} \mathrm{O}$ \& neutral to litmus, and it is insoluble in $\mathrm{NaHCO}_{3}, \mathrm{NaOH} \& \mathrm{HCl}$ or soluble/ insoluble in all -Neutral( Aromatic Hydrocarbons, amides, Anilides etc.)   If substance gives test with both $\mathrm{NaHCO}_{3}$ solution as well as NaOH , then report as Carboxylic acid. If fails to give test with $\mathrm{NaHCO}_{3}$ solution but soluble only with NaOH , report it as Phenol		

## II. TEST FOR SATURATION AND UNSATURATION

i. Baeyer's reagent ( Alkaline $\mathrm{KMnO}_{4}$ )	Decolourisation of $\mathrm{KMnO}_{4}$	*Unsaturated compounds may be present
0.2 g comp. +2 cc $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $+2-3$ drops of very dilute $\mathrm{KMnO}_{4}$ solution	No decolourisation of $\mathrm{KMnO}_{4}$	Saturated compounds may be present
ii. ii Bromine water or Bromine in Carbon tetra Chloride   0.2 g comp. +2 cc bromine water. (If compound is water insoluble perform the test with bromine in carbon tetra chloride).	Decolourisation of $\mathrm{Br}_{2}$   No decolourisation of $\mathrm{Br}_{2}$	Unsaturated compounds may be present   Saturated compounds may be present

* Quickly oxidisable compounds like phenols, aromatic amines. Aldehydes \& ketones change purple colour to brown or black at once.
Conclusion: The given compound is $\qquad$ (Saturated / Unsaturated)


## III. DETERMINATION OF PHYSICAL CONSTANT:

Determine physical constant (melting point) M.P. using Thiele's Apparatus or Electric melting point instrument
The melting point of the given compound is $\qquad$ ${ }^{\circ} \mathrm{C}$ (Observed)

Literature value $\qquad$ ${ }^{\circ} \mathrm{C}$

The melting point is represented in range by $\pm 0.2^{\circ} \mathrm{C}$. for example $156^{\circ} \mathrm{C}-158^{\circ} \mathrm{C}$ or $157^{\circ} \mathrm{C}-159^{\circ} \mathrm{C}$

## IV. DETECTION OF ELEMENTS:

Generally organic compounds contain Nitrogen(N), Halogen(X) and Sulphur(S) along with Carbon, Hydrogen and (Oxygen). For the detection of N, X, and S the Lassaigne's test is performed.

## Preparation of Sodium fusion extract(S.E.)

Place a piece of dry sodium metal (dried by pressing between folds of the filter paper) in a fusion tube and heat till sodium melts to form shining globule. Add a pinch of an organic compound and heat slowly and then strongly until the tube becomes red hot. Plunge the tube at once in a china dish or 50 ccl beaker containing 5 cc . of distilled water. Boil the resulting contents to concentrate for about five minutes and filter the hot solution. The filtrate so obtained is called as Lassaigne's sodium fusion extract (S.E.).

i. Test for Nitrogen (N)   1 ml of S.E. +1 ml of freshly prepared saturated $\mathrm{FeSO}_{4}$ solution + 1or 2 drops NaOH , boil well, add 2 drops of $\mathrm{FeCl}_{3}$, cool thoroughly and acidify with conc. HCl or dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$.	Blue ppt or greenish blue coloured solution	Nitrogen present
ii. Test for Sulphur (S)   a) Nito prusside solution test   1 ml of S.E. + 3-4 drops of fresh and very dilute sodium nitro prusside solution   1or 2 drops NaOH solution.   b) Lead acetate solution test   1 ml of S.E. is acidified with 1 ml of dilute acetic acid + 2-3 drops of lead acetate solution.	Intense purple colour   Black ppt of PbS	Sulphur present   Sulphur present
iii. Test for Halogens (X)   2 ml of S.E. treated with dil $\mathrm{HNO}_{3}$ till acidic boil well, cool and add few drops of Silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ solution.	i. White curdy ppt. readily soluble in ammonia solution.   ii. Pale yellow ppt. soluble in ammonia solution.   iii. Yellow ppt. insoluble in ammonia solution	Chlorine present   Bromine present   Iodine present

Conclusion : The compound contains the elements : $\mathrm{C}, \mathrm{H},(\mathrm{O})$ and $\qquad$

## V. DETECTION OF FUNCTIONAL GROUPS:

The functional groups are detected based on the elements present in the compound and categoried into the following division; a] C,H,(O) b] C,H,(O) and $\mathrm{N} \quad \mathbf{c}] \mathrm{C}, \mathrm{H},(\mathrm{O}), \mathrm{N}$ and $\mathrm{S} \quad \mathrm{d}] \mathrm{C}, \mathrm{H},(\mathrm{O}), \mathrm{N}$, and X and e] $\mathrm{C}, \mathrm{H},(\mathrm{O}), \mathrm{N}, \mathrm{S}$, and X

Division: I : Compounds containing elements $\mathrm{C}, \mathrm{H}, \boldsymbol{\&}(\mathrm{O})$. The compounds may be Acids / Phenols / Neutral.

## 1. TEST FOR CARBOXYLIC ACIDS

## DISTINGUISHING TESTS FOR ACIDS

## Neutral $\mathrm{FeCl}_{3}$ Test : <br> Compound $+1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ heat to dissolve <br> +3 drops of neutral $\mathrm{FeCl}_{3}$ Solution and observe.

(a) Violet colour in cold disappearing by HCl
(b) Buff coloured ppt (warm if you do not get in cold) dissolved by ammonia or HCl .
(c) Reddish brown ppt or buff coloured ppt soluble in HCl .

Salicylic acid present

Cinnamic acid present

Phthalic acid present

## Confirmatory Tests for Carboxylic Acids

C.T. for Salicylic acid : compound +   5drops methyl alcohol + one drop of   conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ warm cool and pour in cold   water taken in a beaker.	Smell of oil of wintergreen   (Iodex smell)	Salicylic acid is present   and confirmed
C.T. for Cinnamic acid :   To the aqueous solution of the acid + 2-4   drops of $\mathrm{CaCl}_{2}$ Solution	White ppt. insoluble in acetic   acid	Cinnamic acid is present   and confirmed
C.T. for Phthalic acid :   (Flourescein test) : Fuse a pinch of the   compound with equal quantity of   resorcinol, Cool + 2-3 drops of conc.   $\mathrm{H}_{2} \mathrm{SO}_{4}$ warm, cool and pour in water   containing 2-5 drops of NaOH taken in a   beaker.Reddish green fluorescence   (red colour with a green   fluorescence)	Phthalic acid is present   and confirmed	

## 2. TEST FOR PHENOLS

## Distinguishing Tests for phenols ( $\alpha$ - Naphthol $\& \boldsymbol{\beta}$-Naphthol )

i. Neutral $\mathrm{FeCl}_{3}$ solution Test   Sub + alcohol, shake well and add 1-   2drops of neutral $\mathrm{FeCl}_{3}$ solution	a) Green colour immediately changing to a white ppt.   b) White ppt slowly changing to violet.	$\beta$-Naphthol present   $\alpha$-Naphthol present
C.T. for Naphthols   ii. Phthalein fusion Test   0.2 g sub +0.2 g Phthalic anhydride + 3 drops of con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ fuse the mixture in a dry test tube gently for about 5-10 minutes. Cooled and diluted with 2 ml water and pour into beaker containing 10 ml of $10 \% \mathrm{NaOH}$ solution .	a) Very faint green colour with slight blue fluorescence   b) Green colour	$\beta$-Naphthol present   \& Confirmed   $\alpha$-Naphthol present   \& Confirmed
C. T. for Naphthols   0.1 g . of substance +5 ml of $10 \% \mathrm{NaOH}$ solution + Few drops chloroform + Copper turnings and warm gently	a) Blue colour to the solution   b) Blue colour changes to green-brown on exposure	$\beta$-Naphthol present \& Confirmed $\alpha$-Naphthol present \& Confirmed

## 3. TEST FOR NEUTRAL COMPOUNDS (KETONES AND AROMATIC HYDROCARBONS) (Benzo phenone, Naphthalene and Diphenyl)

Test for Ketone (Benzo Phenone)   (a) $\mathrm{Sub}+$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.   (b) Sub + Dry sodium metal (rice grain size) fuse on gentle heating	Yellow solution   Deep blue colour	Benzophenone present   Benzophenone present and confirmed
2,4-DNP Test   Take Compound in a TT, add ethyl alcohol + Brady's reagent (2,4,DNP) warm on water bath. (*take orange ppt. as derivative)	Orange ppt.	Benzophenone is confirmed
Test for Hydrocarbons 0.1 g . of substance +0.5 cc of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	Insoluble	Hydrocarbon Present (Naphthalene or Diphenyl may be present . confirmed on the basis of their M.P.s)
C.T. for Naphthalene   Compound + benzene + Picric acid in   benzene, mix\& shake well	Yellow ppt.	Naphthalene is present and confirmed
C. T. Dipehenyl   Compound $(0.5 \mathrm{~g})+2 \mathrm{ml}$ of fuming $\mathrm{HNO}_{3}$ (or 1 cc of con. $\mathrm{H}_{2} \mathrm{SO}_{4}+1$ cc of Con. $\mathrm{HNO}_{3}$ ) in a conical flask. Heat for 5 minutes, cool and pour it into ice cold water.(* take white ppt. as derivative)	White ppt.	(Biphenyl) Diphenyl is present and confirmed

## Division II: Compounds containing elements $\mathbf{C}, \mathbf{H},(\mathbf{O}) \& \mathbb{N}$. The compounds may be Acids/ Bases / Neutral.

## Test for Acids (Anthranilic acid)

i. $\mathrm{Sub}+\mathrm{NaHCO}_{3}$ solution	Soluble with effervescence	Acid (-COOH) present
ii. Test for - $\mathrm{NH}_{2}$ Group by Diazotisation: Diazotization test		
Diazotization: 0.1 g Comp. +3 times conc. HCl in a test tube and cool in ice cold water + add few drops of ice cold solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$.	Orange dye stuff	'- $\mathbf{N H}_{2}$ ' (primary amino) group present.
Add an ice cold solution of $\beta$-Naphthol in NaOH to the above solution.		
iii. Comp. + Alcohol	Soluble with blue fluorescence	Anthranilic acid present


iv. C.T. for Anthranilic acid   Mix a small amount of substance with   equal amount of CaCl 2 and heat gently.   Dissolve the product in 2 ml. of alcohol.	Red coloured   solution exhibiting   viole fluorescence   on standing	Anthranilic acid present   and Confirmed
v. 0.1 g Sub $+\mathrm{ZnCl}_{2}$ fuse by gentle heating   dissolve the product in alcohol	Yellow colour	Anthranilic acid present   and Confirmed

TEST FOR BASES: ( $p$ - Toluidine or $\boldsymbol{p}$-Nitroaniline or $\boldsymbol{m}$-Nitro aniline)

Sub + 1:1 HCl	Soluble and   re precipitation with NaOH	Base present
Test for - $\mathrm{NH}_{2}$ Group by Diazotisation: Diazotization test   Diazotization: 0.1 g Comp. +3 times conc. HCl in a test tube and cool in ice cold water + add few drops of ice cold solution of sodium nitrite( $\left(\mathrm{NaNO}_{2}\right)$.   Add an ice cold solution of $\beta$-Naphthol in NaOH to the above solution.	Orange Red dye	$-\mathrm{NH}_{2}$ group is present   Amine is present   ( p -Toluidine or Nitro aniline)
Test for $-\mathrm{NO}_{2}$ group : Mulliken's Test (Neutral Reduction test) :   Dissolve the Compound   $(0.3 \mathrm{~g})$ in 0.5 ml of hot $50 \%$ aqueous alcohol $+5-6$ drops of $10 \% \mathrm{CaCl}_{2}+$ pinch of Zn dust. Boil the mixture for a minute. Filter and test the filtrate with Tollen's reagent (To silver nitrate add NaOH . Then add $\mathrm{NH}_{4} \mathrm{OH}$ till the ppt. first formed dissolves)	A black ppt. or grey ppt.	$-\mathrm{NO}_{2}$ group is present   (Nitro anilines present)
C.T. FOR NITRO ANILINES:		
Dissolve the Compound in $(0.2 \mathrm{~g}) 0.5 \mathrm{ml}$ acetone + titanous chloride reagent, $(0.5 \mathrm{ml})$ warm the mixture very gently.	Discharge of Mauve colour of the titanous chloride	$m$ - \& $p$-Nitro aniline is present and confirmed
Further these m-\& $\boldsymbol{p}$-Nitro anilines are confirmed by their melting points.		
C.T. FOR NITRO P-TOLUIDENE		
0.5 g sub $+3-4$ drops of dilute $\mathrm{HCl} .+2 \mathrm{ml}$ water + 2-3 drops of $\mathrm{FeCl}_{3}$ solution.	A pale yellow colour changing to red	$p$ - Toluidene present and confirmed

## TEST FOR NEUTRAL COMPOUNDS

COLOURLESS (BENZAMIDE \& ACETANILIDE), M-DINITROBENZENE(YELLOW)
$\left.\begin{array}{|l|l|l|}\hline \text { Compound + Water warm } & \text { Soluble in hot water } & \begin{array}{l}\text {-Anilides(Acetanilide) } \\ \text { \&(Benzamide) present }\end{array} \\ \hline \text { Compound + NaOH, Warm } & \text { Smell of } \mathrm{NH}_{3} \\ \text { No smell of } \mathrm{NH}_{3} \\ \text { (Fishy odour of aniline) }\end{array} \quad \begin{array}{l}\text { Amide is present } \\ \text { (Benzamide) } \\ \text { Anilides(Acetanilide) is } \\ \text { present }\end{array}\right]$

## Division -III: Compounds containing elements C, H,(O)\& Halogens.

## i. Beilstien,s Test

Heat a loop of copper wire till it does not impart green colour to the flame. Cool, and take substance on loop of copper wire and then heat it.
Test for Hydrocarbons
0.1 g . of substance +0.5 cc of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Green edged lame after the initial sooty flame has vanished Insoluble

Halogen present

Halogenated hydrocarbon Present

Note: as per the syllabus halogen compounds are not included
VI. BROAD INFERENCE

S.N	Particulars	Inference
1.	Nature	$: \longrightarrow$
2.	Aliphatic / Aromatic	:
3.	Saturated / Unsaturated	:
4.	Physical Consatant (Melting point)	M.P. = $\qquad$   Literature $\qquad$ ${ }^{\circ} \mathrm{C}$
5	Elements present	
6	Functional group (s) present	:
7	Name of the compound	:
8	Molecular formula	:
9	Structural formula	:
10	Name of the Derivative	:
11	Structural formula of the Derivative	:
12	Physical Constant (Melting point) of the derivative	$\begin{aligned} & \text { M.P. }=\quad-\quad{ }^{\circ} \mathrm{C} \\ & \text { Literature } \quad{ }^{\circ} \mathrm{C} \end{aligned}$

## PREPARATION OF DERIVATIVES

A derivative may be defined as a chemical compound obtained by the chemical reaction of a substance, generally retaining the structure of parent substance.

Preparation of a derivative constitutes the last and of course confirmatory step in systematic identification of an organic compound since the identification of organic compound is said to be correct if the melting point of the derivative coincides with the melting point given in the literature for the same derivative of the same compound.

## 1. Dibromo derivative of Cinnamic Acid (2,3-Dibromo-2-phenyl propionic acid)

Dissolve about 0.5 g of cinnamic acid in 5 ml . of glacial acetic acid in a 100 ml . beaker or conical flask and add excess ( $5-6 \mathrm{ml}$ ) of solution of bromine in acetic acid in small lots with constant shaking. Allow the reaction mixture to stand for about 10 min . and dilute with water. Filter, and wash the product with water and dry. Recrystallise from hot water and determine its M.P.


## 2. 5-Nitro Salicylic acid from Salicylic acid

Dissolve the compound ( 0.5 gm ) in hot water and add 0.5 ml of dilute $\mathrm{HNO}_{3}$ and boil for 5 minutes. Yellow solution is obtained Pour it into the ice - cold water taken in a beaker. Solid separates. Filter, and wash the product with water and dry. Recrystallise from hot water and determine its M.P.


## 3. Phthalic acid to Phthalic anhydride

Take 0.5 g Phthalic acid in a china dish covered with filter paper having a hole in the middle. Place an inverted funnel on the filter paper, lightly plug the nozzle with cotton or filter paper, and heat the dish on a sand bath. On sublimation the acid converts into Phthalic anhydride which collects on the inner side of the funnel. Collect the crystals of phthalic anhydride and determine its M.P.


## 4. Anthranilic acid to Salicylic acid

Diazotise anthranilic acid as follows: Dissolve 0.5 g of acid in about 4 ml of $1: 1 \mathrm{HCl}$ and cool thoroughly. To this solution, add $\mathrm{NaNO}_{2}$ solution drop by drop till a drop of the solution just tints the starch - iodide paper blue, showing a slight excess of $\mathrm{HNO}_{2}$. Boilthe solution until the evolution of nitrogen ceases. Cool and shake thoroughly, Salicylic acid separates out easily. Dry and recrystallise from hot water, determine its the M.P.


## 5. Picrate derivative for $\boldsymbol{\alpha}$-Naphthol, $\boldsymbol{\beta}$-Naphthol and Naphthalene

Dissolve 0.5 to 1 g of the given substance ( $\alpha$ - naphthol or $\beta$ - naphthol or naphthalene) in ethanol. Add $2-3 \mathrm{ml}$ of saturated solution of picric acid in the ethanol. Picrate derivative separates out on mixing. In case no solid separates on mixing, heat the reaction mixture on hot water bath. Cool thoroughly. Filter the product, recrystallize from alcohol(if necessary), dry and determine its M.P.

$\mathbf{Z}=\boldsymbol{\alpha}-$ Naphthol or $\beta-$ Naphthol or Naphthalene whichever is given

## 6. $p, p$ '- Dinitro diphenyl from Diphenyl

Dissolve 0.5 g . substance in 3 ml of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ add 2 ml . conc $\mathrm{HNO}_{3}$. Shake well and place the test tube in a gently boiling water bath for about 5-10 minutes with occasional shaking. Pour the reaction mixture
in 50 ml , ice cold water with constant stirring. Filter, dry and recrystallise from aqueous alcohol and determine its M.P.


## 7. $m$-Nitroaniline from $m$-Dinitrobenzene

Dissolve 0.5 g . of m -Dinitrobenzene in 25 ml . of boiling water. To the boiling solution, add yellow ammonium sulphide till the yellow colour is persistent. Boil further for five minutes. Filter while hot. On cooling, yellow needles of $m$-Nitro aniline separates out. Recrystallise from hot water and determine its M.P.


## 8. 2,4-Dinitrophenylhydrazone derivative from Benzophenone

Take 0.5 g of benzophenone in a dry test tube and dissolve it in few drops of water or ethanol. Add $1 \mathrm{~cm}^{3}$ of 2,4-DNP solution. Heat the mixture on water bath for few minutes and cool it in ice. Orange or red crystalline precipitate separates out. Filter, dry and take the melting point.


## 9. _Benzoic acid from Benzamide

Take 0.5 g . of benzamide in a 100 ml . R.B. flask or conical flask and add $6-7 \mathrm{ml}$. of $25 \% \mathrm{NaOH}$ solution. The flask is fitted with reflux (air) condenser. Reflux the contents until all ammonia has been driven off (it takes about half an hour) and then cool. Add concentrated hydrochloric acid drop wise till the reaction mixture is strongly acidic and the benzoic acid separates out as a derivative. Filter and recrystallise from hot water. Determine melting point.


## 10. $p$-Bromo acetanilide from Acetanilide

1 g . of acetanilide is dissolved in 5 ml . glacial acetic acid in a 100 or 50 ml . conical flask. To this add bromine in acetic acid in small quantities till colour of bromine persists to solution. The mixture is allowed to stand for 10-15 minutes and then poured into ice cold water with constant stirring and filter the product, wash with cold water and recrystallise from $25 \%$ ethanol. Determine the melting point.


## 11. Acetyl derivative.

A mixture of $p$-toluidine or $m$-nitroaniline or $p$-nitroaniline $(1 \mathrm{~g})$ and zinc dust $(0.5 \mathrm{~g})$ in acetic acid $(5 \mathrm{ml})$ in a 100 ml round bottom flask was heated over a gentle flame using water condenser. Heating was continued for about 30 min . The reaction mixture was then carefully poured in cold water ( 20 ml ) in a 100 ml beaker with cooling and vigorous stirring. The shining crystals of respective anilides were separated slowly. After 15 min . the anilide crystals were collected by filtration. The solid crystals were washed over the Buchner funnel with water and the products dried and take melting point.


Picrate derivative can also be performed for nitro anilines. Procedure is remained same to that of Naphthols.

## Name, Structure and M.P. of derivatives of Organic Compounds

Compound	$\begin{gathered} \text { Melting } \\ \text { point } \\ \text { range } \\ \left({ }^{0} \mathrm{C}\right) \\ \hline \end{gathered}$	Molecular Formula	Structural formula	Derivative Melting point
1. Cinnamic acid	133-134	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$		2,3 - Dibromo-3- phenyl propionic acid $\left(194-195^{\circ} \mathrm{C}\right)$
2. Salicylic acid	157-158	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}$		5-Nitro salicylic acid $\left(\mathbf{2 3 0}-231^{0} \mathrm{C}\right)$
3. Phthalic acid	193-213	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}$		Phthalic anhydride $\left(127-128^{\circ} \mathrm{C}\right)$
4. Anthranilic acid	148-149	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$		Salicylic acid $\left(157-158^{0} \mathrm{C}\right)$
PHENOLS				
5. $\alpha$-Naphthol	93-94	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OH}$		Picrate derivative $\left(189-190^{0} \mathrm{C}\right)$
6. $\beta$-Naphthol	121-122	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{OH}$		Picrate derivative $\left(156-158^{0} \mathrm{C}\right)$
NEUTRALS   1. Hydrocarbons				
7. Naphthalene	79-80	$\mathrm{C}_{10} \mathrm{H}_{8}$		Picrate derivative Naphthalene picrate $\left(149-151^{0} \mathrm{C}\right)$
8. Diphenyl	70-72	$\mathrm{C}_{12} \mathrm{H}_{10}$		$p, p^{\prime}$ - Dinitro diphenyl (233- $\left.234^{\circ} \mathrm{C}\right)$
9. $m-$   Dinitrobenzen e	89-90	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}$		$m$-Nitroaniline $\left(114-115^{0} \mathrm{C}\right)$
2. KETONES				
10. Benzo phenone	48-49	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$		2,4 - Dinitrophenyl hydrazone   $\left(238-239^{\circ} \mathrm{C}\right)$
3. AMIDES				
11. Benzamide	128-129	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CONH}_{2}$		Benzoic acid $\left(122-123^{\circ} \mathrm{C}\right)$


4. ANILIDES				
12. Acetanilide	114-115	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}$		$\left.\underset{(\mathbf{1 6 6 - 1 6 7}}{ }{ }^{\mathbf{C}} \mathbf{C}\right)$
BASES				
13. $p$-Toluidine	43-44	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$		p-Acet-toluidide (153-154 ${ }^{\circ} \mathrm{C}$ )
14. $m-$   Nitroaniline	113-114	$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right) \mathrm{NH}_{2}$		$\begin{gathered} m \text {-Nitroacetanilide } \\ \left(\mathbf{1 5 4 - 1 5 5} \mathbf{5}^{\circ} \mathbf{C}\right) \end{gathered}$
15. $p$ -   Nitroaniline	147-148	$p-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right) \mathrm{NH}_{2}$		p-Nitroacetanilide ( $\mathbf{2 5 5 - 2 5 7}{ }^{\circ} \mathrm{C}$ )

## References:

1. A Text Book of Practical Organic Chemistry- By Arthur I .Vogel, IV ${ }^{\text {th }}$ Edn. ELBS, 1978 Longman Group Ltd.
2. Organic Experiments VII ${ }^{\text {th }}$ Edition Louis F. Fieser Late Professor Emeritus Harvard University Kenneth L Williamson Mount Holyoke College
3. Systematic Lab experiments in Organic Chemistry- ArunSethi
4. Practical Organic Chemistry - Nadkarni and Kulkarni
5. Advanced Practical Organic Chemistry - N.K.Vishnoi
6. Practical Chemistry -.O.P.Pandey,D.N.Bajpai \& S.Giri
7. A hand book of Analytical Chemistry- Subhash \& Satish
8. Elementary Practical Chemistry-G.D.Sharma, Arun Bahl
9. Practical Organic Chemistry - V. K. Ahluvalia, Dhingra \& Gulati

DISTRIBUTION OF MARKS	
Nature and separation	$2+3$
Prelimanary tests	02
Element test	04
Physical constant	03
Functional Group test	04
Identification and Structure	03
Preparation of derivative	03
Physical constant of derivative	03
Systematic Presentation	03
Journal	05
Viva voce	05
	$\mathbf{4 0}$

## B.Sc V Semester: Paper-II

## EXPERIMENTS IN PHYSICAL CHEMISTRY

Total No of Hours/Week : 04 Hours   Total No of Hours : 52 Hours		Practical:40 Marks   IA : 10 Marks
Expt.   No	Experiments	Page   No.
1	Determination of concentration of HCl solution by conductometric titration using the standard NaOH solution.	163
2	Determination of concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ solution by conductometric titration using the standard NaOH solution.	165
3	Determination of dissociation constant of acetic acid conductometrically	167
4	Verification of Beer-Lambert's law by colorimetric method and calculation of molar extinction coefficient of cuprammonium sulphate complex.	169
5	Determination of concentration of strong acid by potentiometric titration against standard solution of 0.1 N NaOH .	171
6	Preparation of buffer solutions using 0.2 M acetic acid and 0.2 M sodium acetate with help of Henderson equation and determination of their mole ratio using pH -meter.	173
7	Determination of equivalent conductance of strong electrolyte $(\mathrm{NaCl})$ at infinite dilution $\left(\lambda_{\infty}\right)$.	175
8	Verification of the Beer Lambert's Law by colorimetric method and determination of unknown concentration of ferric $\left(\mathrm{Fe}^{3+}\right)$ ions.	177
9	To determine conductometrically the $2^{\text {nd }}$ order rate constant for soaponification of ethyl acetate.	179
10	Determination of pH of the following biological Juices.   (i)Milk (ii) Orange Juice (iii) Lime water (iv) citrus acid solutions (vi) $\mathrm{NaHCO}_{3}$.	181
11	Determination of critical solution temperature of the partially miscible liquids (Water and Phenol).	183

## Scheme of Marking:

Accuracy $=18$

Proper Technique and Presentation $=03$
Calculation (Calculation + Graph $)=09(5+4)$
Viva voce $=05$
Journal $=05$
Total

$$
=40 \text { Marks }
$$

## NB: 1. Scientific calculators are not allowed. <br> 2. Use A4 size graph sheets.

## Expt No 1: CONDUCTOMETTIC TITARATION (Acid-Base)

Aim: To titrate conductometrically the given solution of $\mathrm{HCl}($ approx 0.1 N ) against standard NaOH solution and determine the strength and amount of the acid solution.

Chemicals: 0.5 N NaOH and approx 0.1 N HCl solution.
Apparatus: Conductivity meter, conductivity cell ( 1.0 or 0.5 cm ), Micro burette, Pipette etc.
Theory: Conductivity of a solution depends on the mobility as well as number of ions. The $\mathrm{H}^{+}$ions have greater mobility than any other ions. When a strong acid is titrated against NaOH , the $\left[\mathrm{H}^{+}\right]$decreases there by conductance decreases till all the $\mathrm{H}^{+}$ions are neutralized. Further, addition of NaOH increases the conductance due to a second highest mobile ion, $\mathrm{OH}^{-}$that is not consumed after neutralization. Hence, for any strong acid against strong base titration, a plot of conductance against volume of alkali gives two straight lines. Intersection of these lines will be the end point or neutralization point.

$$
\text { Reaction: } \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

## Procedure:

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 25 cc of given HCl solution into a 100 cc beaker.
5. Place the conductivity cell and connect to the terminals of the conductivity meter.
6. Add about 20 cc distilled water to the beaker (if the electrodes are not completely immersed) and stir well with glass rod. Note down the conductance of solution in mS .
7. Rise up the electrodes and add 0.5 cc of the NaOH solution from micro burette carefully and stir the solution. There may be a slight heating effect due to neutralization and hence, wait for 30 seconds to cool. Note down the conductance.
8. Continue the titration by adding 0.5 cc at a lot up to 10 cc and record the conductance for every addition.
9. Plot a graph of conductance against volume of NaOH added. Find out the end point from the intersection of two lines. Calculate the normality and amount of HCl .

## Observations:

Volume of HCl solution taken $=25.0 \mathrm{cc}$

Volume of NaOH added	Observed conductance   $(\mathrm{mS})$
0.0 cc	
0.5 cc	
1.0 cc	
..	
..	
10.0 cc	

## Calculations:

i. Normality of acid solution $: \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{\mathrm{HCl}} \quad=\underline{\mathrm{N}} \underline{\mathrm{NaOH}}^{\mathrm{x} \text { End point from graph }}$
$=\ldots . . . . . . . . . . \mathrm{N}$
ii. Amount of $\mathrm{HCl}=\mathrm{N}_{\mathrm{HCl}} \mathrm{x}$ equivalent mass of HCl
$=\ldots \ldots \ldots \ldots . . \mathrm{g} / \mathrm{dm}^{3}$

## Nature of the Graph



## Results:-

1. Normality of HCl
$=\ldots . . . . . . . . \mathrm{N}$
2. Amount of HCl
$=\ldots \ldots \ldots \ldots \mathrm{g} / \mathrm{dm}^{3}$

Note: 1.Preserve the conductivity cell always in distilled water

## Expt No 2: CONDUCTOMETTIC TITARATION (Acid-Base)

Aim: To titrate conductometrically the given solution of $\mathrm{CH}_{3} \mathrm{COOH}$ (approx 0.1 N ) against standard NaOH solution and determine the strength and amount of the acid solution.

Chemicals: 0.5 N NaOH , approx. $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ solution.

## Apparatus: Conductivity meter, conductivity cell ( 1.0 or 0.5 cm ), Micro burette, Pipette etc.

Theory: Conductivity of a solution depends on the mobility as well as number of ions. The $\mathrm{H}^{+}$ions have greater mobility than any other ions. When a strong acid is titrated against NaOH , the $\left[\mathrm{H}^{+}\right]$ decreases there by conductance decreases till all the $\mathrm{H}^{+}$ions are neutralized. Further addition of NaOH increases the conductance due to a second highest mobile ion, $\mathrm{OH}^{-}$that is not consumed after neutralization.

In case of weak acid like $\mathrm{CH}_{3} \mathrm{COOH}$, the free $\mathrm{H}^{+}$ions are not there in sufficient numbers. Hence, the addition of NaOH increases the conductance gradually due to formation of $\mathrm{CH}_{3} \mathrm{COONa}$ till neutralization and further addition of NaOH leads to a rapid increase in conductance due to unused $\mathrm{OH}^{-}$ions

Hence, for any weak acid against strong base titration, a plot of conductance against volume of alkali gives two straight lines. Intersection of these lines will be the end point or neutralization point.

$$
\text { Reaction: } \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

## Procedure:

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 25 cc of given $\mathrm{CH}_{3} \mathrm{COOH}$ solution into a 100 cc beaker.
5. Place the conductivity cell and connect to the terminals of the conductivity meter.
6. Add about 20 cc distilled water to the beaker (if the electrodes are not completely immersed) and stir well with glass rod. Note down the conductance of solution in mS .
7. Rise up the electrodes and add 0.5 cc of the NaOH solution from micro burette carefully and stir the solution. There may be a slight heating effect due to neutralization and hence, wait for 30 seconds to cool. Note down the conductance.
8. Continue the titration by adding 0.5 cc at a lot up to 10 cc and record the conductance for every addition.
9. Plot a graph of conductance against volume of NaOH added. Find out the end point from the intersection of two lines. Calculate the normality and amount of acid.

## Observations:

Volume of $\mathrm{CH}_{3} \mathrm{COOH}$ solution taken $=25.0 \mathrm{cc}$

Volume of NaOH added	Observed conductance   $(\mathrm{mS})$
0.0 cc	
0.5 cc	
1.0 cc	
..	
..	
10.0 cc	

## Calculation:

i. Normality of acid solution: $\mathrm{N}_{1} \mathrm{~V}_{1}=\quad \mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{N}_{\mathrm{CH} 3 \mathrm{COOH}}=\underline{\mathrm{N}} \mathrm{NaOH}_{\mathrm{X} \text { End point from graph }}$
$\mathrm{V}_{\mathrm{CH} 3 \mathrm{COOH}}$
= ..................N
ii. Amount of $\mathrm{CH}_{3} \mathrm{COOH}$

$$
\begin{aligned}
& =\mathrm{N}_{\mathrm{CH} 3 \mathrm{COOH}} \mathrm{x} \text { equivalent mass of } \mathrm{CH}_{3} \mathrm{COOH} \\
& =\ldots \ldots \ldots \ldots \mathrm{g} / \mathrm{dm}^{3}
\end{aligned}
$$

## Nature of the Graph



## Results:-

1. Normality of $\mathrm{CH}_{3} \mathrm{COOH}=\ldots \ldots \ldots \ldots . . \mathrm{N}$
2. Amount of $\mathrm{CH}_{3} \mathrm{COOH} \quad=\ldots \ldots \ldots \ldots \ldots \mathrm{g} / \mathrm{dm}^{3}$

Note: 1. Preserve the conductivity cell always in distilled water

Expt No. 3

## CONDUCTOMETERY (Ка нас)

AIM: To determine the dissociation constant $\mathrm{K}_{\mathrm{a}}$ of acetic acid conductometrically.
Chemicals: $0.1 \mathrm{~N} \mathrm{KCl}, 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ solution
Apparatus: Conductivity meter, conductivity cell ( 1.0 cm ) , beaker, glass rod etc.
Theory: Since acetic acid is weak electrolyte, it partially ionizes in aqueous solution. Hence, acetic acid solution shows a low conductance. As dilution increases, specific conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ decreases, but both equivalent conductance and degree of dissociation ( $\alpha$ ) will increase with dilution. According to Ostwald's dilution law, the degree of dissociation ( $\alpha$ ) of weak electrolyte is inversely proportional to square root of initial molar concentration of electrolyte. For strong electrolytes, $\alpha$ is almost equal to 1 , but in case of weak electrolytes $\alpha$ is less than 1 . However, dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}\right)$ always remains constant for any dilution.

## Procedure:

A) Determination of cell constant :

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 50 cc of 0.1 N KCl solution in to 100 cc beaker.
5. Place the conductivity cell in the beaker and connect it to the terminals of conductivity meter.
6. Note down the conductance of the solution in mS .
7. Calculate the cell constant.

## B) Determination of equivalent conductivities:

1. Pipette out 50 cc of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ solution into 100 cc clean beaker containing the conductivity cell and note down the conductance in mS .
2. Dilute this solution to 0.05 N by withdrawing 25 cc of the above solution and adding 25 cc distilled water with pipette, stir well and note down the conductance in mS .
3. Similarly, dilute the above solution to 0.025 N and 0.0125 N , and record the conductance for every dilution.
4. Calculate the specific conductance, equivalent conductance, degree of ionization and dissociation constant $\mathrm{K}_{\mathrm{a}}$.

## Observations:

## A) Determination of cell constant :

1. Observed conductance of 0.1 N KCl soln. $\quad=\ldots \ldots . . \times 10^{-3} \mathrm{~S}$.
2. Specific conductance of 0.1 N KCl soln. at room temperature $=0.01288 \mathrm{~S} \mathrm{~cm}^{-1}$
3. Determination of cell constant:

$$
\begin{aligned}
\text { Cell constant } & =\frac{\text { Specific conductance of } 0.1 \mathrm{~N} \mathrm{KCl}}{\text { Observed conductance }} \\
& =\frac{0.01288}{\text { Observed conductance }} \\
& =-\ldots-------\mathrm{cm}^{-1}
\end{aligned}
$$

## B) Determination of equivalent conductivities:

The equivalent conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution ie $\lambda_{\infty}=\mathbf{3 8 7} \mathbf{S c m}^{\mathbf{2}} \mathbf{e q v}^{-1}$

Concentration of solution (C)	Observed conductance (S)	Specific conductance, $\kappa=$ Cell constant $\times$ Observed conductance ( $\mathrm{Scm}^{-1}$ )	Equivalent conductance $\begin{aligned} & \lambda_{\mathrm{c}}=\frac{1000 \times \kappa}{\mathrm{C}} \\ & \left(\mathrm{Scm}^{2} \mathrm{eqv}^{-1}\right) \end{aligned}$	Degree of dissociatio $\stackrel{n}{\alpha}=\lambda_{c} / \lambda_{\infty}$	$\mathrm{K}_{\mathrm{a}}=\frac{\text { C. } \dot{\alpha}^{2}}{(1---\dot{\alpha})}$
0.1 N	$\times 10^{-3}$				
0.05 N	$\times 10^{-3}$				
0.025 N	$\times 10^{-3}$				
0.0125 N	$\times 10^{-3}$				
	Average of $\mathrm{K}_{\mathrm{a}}$				

## Result:

The average value of Ka of $\mathrm{CH}_{3} \mathrm{COOH}$ $\qquad$

## Conclusion

1. As dilution increases equivalent conductance increases.
2. As dilution increases degree of dissociation increases.
3. As dilution increases magnitude of dissociation constant remains same.

Note: 1. The theoretical value of Каснзсоон $=1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$
2. Preserve the conductivity cell always in distilled water

## Expt. No. 4

## COLORIMETRY

Aim: To Verify the Beer-Lambert's law by colorimetric method and calculate the molar extinction coefficient of $\mathrm{Cu}^{+2}$ in cuprammonium sulphate complex.

Chemicals: solid $\mathrm{CuSO}_{4}$, ammonia and Con. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Apparatus: Colorimeter, cells, test tubes, test tube stand etc.
Theory: Suppose an intensity of light absorption of a colored solution at a suitable wavelength for various known concentration is determined, using Beer-Lambert's law the unknown concentration of same solution can be determined by measuring absorption at the same wavelength.

Beer-Lambert's states that when beam of light is passed through a coloured solution, decrease in intensity of transmitted light is directly proportional to thickness as well as path length of the solution.

Mathematically, Beer-Lambert's law can be written as

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{0} . \mathrm{e}^{-\mathrm{kCd}} \quad \text { where }, \quad \mathrm{I}_{\mathrm{o}}=\text { Intensity of the incident light } \\
& \ln \mathrm{I}_{0} / \mathrm{I}=\mathrm{k} \mathrm{C} \mathrm{~d} \quad \mathrm{I}=\text { Intensity of transmitted light } \\
& \mathrm{C}=\text { concentration of a solution } \\
& \mathrm{d}=\text { thickness of a solution } \\
& \mathrm{k}=\text { absorption coefficient } \\
& \text { or } \quad \log \mathrm{I}_{0} / \mathrm{I}=\frac{\mathrm{k} . \mathrm{C} . \mathrm{d}}{2.303} \quad \text { or } \quad \mathrm{OD}=\frac{\mathrm{k} . \mathrm{C} . \mathrm{d}}{2.303}=\text { Optical Density } \\
& \text { or } \quad \mathrm{OD}=\varepsilon \mathrm{Cd} \\
& \text { where, } \mathrm{OD}=\text { Optical Density, i.e., amount of light } \\
& \text { absorbed by solution of known } \\
& \text { concentration\& known thickness. } \\
& \varepsilon=\frac{\mathrm{k} .}{2.303}=\quad \begin{array}{l}
\text { molar extinction coefficient (constant) } \\
\text { when ' } \mathrm{C} \text { ' in } \mathrm{mol} / \mathrm{dm}^{3}
\end{array}
\end{aligned}
$$

This principle is extensively used in colorimetric estimation. When the thickness of a solution is 1 cm , a slope from the plot of OD Vs Concentration gives $\varepsilon$. The $\varepsilon$ of $\mathrm{Cu}^{2+}$ in a colored complex can be determined calorimetrically.

Reaction: The complex between $\mathrm{Cu}^{2+} \& \mathrm{NH}_{3}$ is formed as follows:
Procedure: $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}$


1. Prepare $0.01 \mathrm{M} \mathrm{CuSO}_{4}$ solution in 100 cc volumetric flask by weighing out 250 mg and $2 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solution by measuring out $13.7 \mathrm{cc} \mathrm{NH}_{3}$ from measuring cylinder to 100 cc volumetric flasks as explained in observation.
2. Prepare cuprammonium sulphate complex solution of different concentrations in 08 separate test tubes by adding required quantity of $0.01 \mathrm{~N} \mathrm{CuSO}_{4}, 2 \mathrm{M} \mathrm{NH} 44 \mathrm{OH}$ and distilled water as given in table 2.
3. Selection of suitable filter: Inserting the cell containing solution No. 1 in the colorimeter, adjust the OD to zero. Now using solution No. 5 of moderate concentration, observe the OD for a filter having lower wave length.
4. Similarly, observe the OD of the same solution for remaining filters of higher wave lengths by setting OD zero to solution No. 1 for every filter. The filter which gives the maximum OD is suitable one.
5. Determination of OD of solutions: Using the suitable filter selected, find out the OD for all the prepared solutions.
6. Plot a graph of OD against concentration, which gives a straight line passing through the origin. This is the verification of Beer-Lambert's law.
7. From the slope of graph, calculate the molar extinction coefficient of complex.

## Observations:

1. Preparation of $0.01 \mathrm{MCuSO}_{4}$ :

250 mg of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is dissolved in few cc of distilled water and taken into 100 cc volumetric flask. Two to three drops of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ are added to prevent the hydrolysis. Then it is diluted to 100 cc which gives $0.01 \mathrm{M} \mathrm{CuSO}_{4}$.
2. Preparation of $\mathbf{2 M ~ N H} \mathbf{4} \mathbf{O H}$ :
13.7 cc of liquor ammonia is measured out with measuring cylinder and diluted to 100 cc with distilled water in a volumetric flask.
Table No. 1 : Selection of Suitable filter
Solution No. 04

Filter   No.(Wavelength)									
OD									

Remark: The Filter No. $\qquad$ gives the maximum OD. Hence it is selected as suitable filter.

Table No. 2 : Determination of OD of Solutions

Sol.   No.	Vol. of CuSO   4   Soln.(cc)	Vol. of distilled   water (cc)	Vol. of   $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{cc})$	Concentration of   $\mathrm{Cu}^{2+}$ in $\mathrm{mol} / \mathrm{dm}^{3}$	OD
1	0.0	8.0	2.0	0.000	
2	1.0	7.0	2.0	0.001	
3	2.0	6.0	2.0	0.002	
4	3.0	5.0	2.0	0.003	
5	4.0	4.0	2.0	0.004	
6	5.0	3.0	2.0	0.005	
7	6.0	2.0	2.0	0.006	
8	7.0	1.0	2.0	0.007	
9	8.0	0.0	2.0	0.008	

Nature of the graph
OD

## Expt No. 5

## POTENTIOMETRIC TITRATION (Acid-Base)

Aim: To determine the concentration of strong acid $(\mathrm{HCl})$ by potentiometric titration against standard solution of 0.1 N NaOH solution.
Chemicals: 0.1 N NaOH , approx 0.1 N HCl , Quinhydrone. Saturated solution of KCl etc.
Apparatus: Potentiometer, calomel electrode, platinum electrode etc.
Theory: If HCl is titrated against NaOH potentiometrically, one should select an electrode reversible to hydrogen ions. Quinhydrone is one such electrode and when an inert electrode like platinum is inserted in its solution, a potential develops. It can be given as:

$$
\mathrm{E}_{\mathrm{Qin}}=\mathrm{E}^{\mathrm{o}}+0.0591 \log \left[\mathrm{H}^{+}\right] \text {at } 25^{\circ} \mathrm{C} .
$$

When this is connected to reference electrode like calomel, a cell is set up. The EMF of the cell depends on $\left[\mathrm{H}^{+}\right]$. On adding small quantities of NaOH , the EMF will change slowly first and rapidly at the end point and again becomes slow after crossing the end point. The graph of EMF v/s volume of NaOH added gives a reverse sigmoid curve passing through X -axis, which is the equivalence point. The differential plot of $\Delta \mathrm{E} / \Delta \mathrm{V}$ vs. volume of NaOH added also gives a sharp end point

## Procedure:

1. Pipette out 25 cc of given HCl solution in 100 cc beaker and add a pinch of solid quinhydrone and stir the solution with a glass rod. Keep it for a while.
2. Fill the burette with exact 0.1 N NaOH solution.
3. Switch on the potentiometer and standardize the potentiometer by inserting two banana plugs into the sockets at channel I or II and adjust the EMF to 1.018 V with the calibration screw. Remove these plugs after standardization.
4. Place the platinum electrode in the above quinhydrone solution and calomel electrode in another beaker having about 50 cc saturated KCl solution. Connect the solutions internally through KCl salt bridge and electrodes externally to the terminals of Potentiometers at either channel I or II at which it is standardized i.e., calomel electrode to negative and platinum electrode to positive terminals of the potentiometer. Record the EMF at 0.0 volume.
5. Start titration by adding 1.0 cc of 0.1 N NaOH at a lot with constant stirring and record the EMF every addition. Meanwhile, observe the rapid change in EMF at certain volume of NaOH where there will be an equivalence point (approximate) and EMF will be in -ve value. Continue the additions for another 04 readings after -ve EMF are obtained.
6. Plot a graph of EMF $\mathrm{v} / \mathrm{s}$ volume of NaOH added which gives a reverse sigmoid curve and $\Delta \mathrm{E} / \Delta \mathrm{V} \mathrm{v} / \mathrm{s}$ volume of NaOH added gives a peak which is the exact point of equivalence.

## Observations

a) Representation of cell
$\stackrel{-}{\mathrm{Hg} / \mathrm{Hg}^{+} / / \mathrm{H}^{+} / \text {Quinhydrone / } \mathrm{Pt}}$

Table: Volume of HCl taken $=25.0 \mathrm{cc}$

Volume of 0.1N   $\mathrm{NaOH}(\mathrm{V} \mathrm{cc})$	EMF (E)   in Volts	$\Delta \mathrm{V}$	$\Delta \mathrm{E}$	$\Delta \mathrm{E} / \Delta \mathrm{V}$
0.0				
1.0				
2.0				
.				
$\cdot$				
-				
-				

Nature of the graph
(graph-I)


Calculation
Differential curve
(graph-II)


From graph-I
$=\frac{\mathrm{N}_{\mathrm{NaOH}} \mathrm{X} \text { equivalence point from graph }}{\mathrm{V}_{\mathrm{HCl}}}=\frac{0.1 \mathrm{x} \text { equivalence point }}{25}$
2. Amount of $\mathrm{HCl}=\mathrm{N}_{\mathrm{HCl}} \times$ equivalent mass of $\mathrm{HCl}=$ $\qquad$ $. \mathrm{g} / \mathrm{dm}^{3}$

## From graph-II

1. $\mathrm{N}_{\mathrm{HCl}}=\frac{\mathrm{N}_{\mathrm{NaOH} X} \text { equivalence point from graph }}{\mathrm{V}_{\mathrm{HCl}}}=\frac{0.1 \mathrm{x} \text { equivalence point }}{25}$
2. Amount of $\mathrm{HCl}=\mathrm{N}_{\mathrm{HCl}} \mathrm{x}$ equivalent mass of $\mathrm{HCl}=\ldots \ldots \ldots . \mathrm{g} / \mathrm{dm}^{3}$

## Result:

1. The concentration of the given HCl solution $=$ graph-I.........\& graph-II ......N
2. Amount of $\mathrm{HCl} \quad=$ graph-I........\& graph-II $\ldots . . \mathrm{g} / \mathrm{dm}^{3}$

## Expt.No. 6

pH metry (Buffer solutions)
Aim: To prepare buffer solutions using 0.2 M acetic acid and 0.2 M sodium acetate with help of
Henderson equation and determine the mole ratio of solution of unknown pH using pH -meter.
Chemicals: 0.2 N acetic acid, 0.2 N sodium acetate
Apparatus: 12 test tubes, gradated pipette, pH meter, glass electrode etc
Theory: A solution whose pH does not practically change on addition of small amounts of acids or alkalis is called as a buffer solution. Buffer capacity means, the amount in gram equivalent of an acid or base which is to be added in order to change the pH of buffer solution by unity.

A buffer solution generally consists of a mixture of a weak acid and one of its salt solution or a mixture of a weak base and one of its salt solution. The pH of such buffer solution remains practically constant by addition of small amounts of acids or base because it is controlled by chemical equilibrium. The buffer solutions of required pH can be prepared by using Henderson -Hasselbalch equation: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log$ [salt]/ [acid] for acidic pH solution.

The pH meters are used to determine the pH of solution using glass electrode.

## Procedure:

1. Prepare the standard solutions of 0.2 M acetic acid and 0.2 M sodium acetate in 100 cc volumetric flasks.
2. Arrange 11 clean test tubes ( 20 cc capacity) and label them from 1 to 11 .
3. Calculate the volume of 0.2 M acetic acid and 0.2 M sodium acetate solutions required to prepare buffer solution of given pH in 10 cc using Henderson equation. Record such calculated volumes in table.
4. Add required volume of 0.2 M acetic acid and 0.2 M sodium acetate solutions to each test tube as calculated above. The total volume should be 10 cc .
5. Standardize the pH meter as mentioned on the instrument. (May be using the standard solutions of known (minimum) $\mathrm{pH}=4.0$ and known (maximum) $\mathrm{pH}=9.2$ with the help of glass electrode or with the adjustment by screw driver).
6. 10cc of each buffer solution is taken in another big test tube separately in which the glass electrode is dipped and later on connected to the pH meter.
7. Record the pH of these buffer solutions.
8. Measure the pH of unknown composition of buffer solution.
9. Calculate the mole ratio of the unknown composition.

## Preparation of standard solution

1. 0.2 M Acetic acid solution ( normality of glacial acetic acid in bottle sample =17)

Measure out 1.2 cc glacial acetic acid to 100 cc volumetric flask and dilute up to the mark with distilled water, which gives 0.2 M acetic acid solution.
2. 0.2 M sodium acetate $(\mathbf{M o l}$. Mass $=82)$

Dissolve 1.64 g of sodium acetate in water and transfer to 100 cc volumetric flask, and dilute up to the mark with distilled water, which gives 0.2 M sodium acetate solution.

Observations

Sl. No. of   test tubes	Required   pH	Vol. of 0.2M   acetic acid (cc)	Vol.of 0.2M Sodium   acetate (cc)	Total Volume   $(\mathrm{cc})$	Observed pH
1	3.45	9.5	0.5	10.0	
2	3.75			10.0	
3	4.14			10.0	
4	4.38			10.0	
5	4.57			10.0	
6	4.74	5.0		10.0	
7	4.92			10.0	
8	5.11			10.0	
9	5.35			10.0	
10	5.70			10.0	
11	6.02				10.0
Unknown				10.0	

1. Calculation of volume of acid and salt solution to be mixed to prepare a solution of required $\mathbf{p H}$.

Volume of acid $=($ proportionate of acid/ total volume ratio) 10 cc
Similarly, Volume of salt $=$ (proportionate of salt $/$ total volume ratio $) \times 10 \mathrm{cc}$
2. Ex., Required $\mathbf{p H}=6.02 \quad\left(\right.$ When $\left.\mathbf{p H}>\mathbf{p K}_{\mathbf{a}}\right)$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [$ salt $] /[$ acid $] \quad \mathrm{K}_{\mathrm{a}}$ of acetic acid $=1.8 \times 10^{-5}$
$6.02=4.7447+\log [$ salt] $/[$ acid $]$
6.02-4.7447 $=\log$ [salt]/ [acid]
$1.2753=\log$ [salt]/ [acid]
Anti $\log (1.2753)=[$ salt $] /[$ acid $]=$ Volume of salt solution $/$ Volume of acid solution
$18.8495=$ Volume of salt solution $/$ Volume of acid solution
i.e., $18.8495=$ proportionate of salt solution
i.e., $1.000 \quad=$ proportionate of acid solution
$19.8495=$ Total volume ratio
Volume of salt solution $=(18.8495 / 19.8495) \times 10 \mathrm{cc}=9.5 \mathrm{cc}$
Similarly, Volume of acid solution $=(1.00 / 19.8495) \times 10 \mathrm{cc}=0.5 \mathrm{cc}$
3. Ex., Required $\mathbf{p H}=3.45 \quad\left(\right.$ When $\left.\mathbf{p H}<\mathbf{p K}_{\mathbf{a}}\right)$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [$ salt $] /[$ acid $] \quad \mathrm{K}_{\mathrm{a}}$ of acetic acid $=1.8 \times 10^{-5}$
$3.45=4.7447+\log [$ salt $] /[$ acid $]$
3.45-4.7447 $=\log [$ salt $] /[$ acid $]$
$-1.2947=\log [$ salt $] /[$ acid $]$
Anti $\log (-1.2947)=$ [salt]/ [acid] = Volume of salt solution /Volume of acid solution $0.05073=$ Volume of salt solution /Volume of acid solution
i.e., $(1 / 0.05073)=\mathbf{1 9 . 7 1 0}=$ Volume of acid solution /Volume of salt solution
i.e., $19.710=$ proportionate of acid solution
$\mathbf{1 . 0 0}=$ proportionate of salt solution
$\mathbf{2 0 . 7 1 0}$ = Total volume ratio
Volume of salt solution $=(1.00 / \mathbf{2 0 . 7 1 0}) \times 10 \mathrm{cc}=0.5 \mathrm{cc}$
Similarly, Volume of acid solution $=(\mathbf{1 9 . 7 1 0} / \mathbf{2 0 . 7 1 0}) \times 10 \mathrm{cc}=9.5 \mathrm{cc}$
4. Calculation of mole ratio of unknown composition:

$$
\begin{array}{rll}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [\text { salt }] /[\text { acid }] & \mathrm{K}_{\mathrm{a}} \text { of acetic acid }=1.8 \times 10^{-5} \\
\log [\text { salt }] /[\text { acid }] & =\left(\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right) & \\
{[\text { salt }] /[\text { acid }]} & =\text { anti } \log \left(\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right) &
\end{array}
$$

When Concentration of Acid is equal to that of salt, mole ratio can be considered as volume ratio.
[salt] / [acid] = Volume of salt solution /Volume of acid solution
Result: The pH of the unknown composition solution $=\ldots \ldots \ldots \ldots$.
Mole ratio of unknown composition solution $=\ldots \ldots \ldots \ldots \ldots$.

## Expt. No. 7 CONDUCTOMETERY (Infinite dilution)

Aim: To determine the equivalent conductance of strong electrolyte $(\mathrm{NaCl})$ and equivalent conductance at infinite dilution ( $\lambda \infty$ ).

Chemicals: $0.1 \mathrm{M} \mathrm{KCl}, \quad 0.2 \mathrm{~N} \mathrm{NaCl}$ solution
Apparatus: Conductivity meter, conductivity cell(1.0 cm), Beaker (100cc), Volumetric flask etc.
Theory: The equivalent conductance of the strong electrolytes approaches a limiting value as concentration is diminished. This quantity is called the equivalent conductance at "infinite dilution" and represented by $\lambda_{\infty}$ wherein inter ionic interaction is negligible. It is presumably a measure of the conducting power of 1 gm equivalent of the electrolyte when it is completely split up into ions in the solution. The determination of $\lambda_{\infty}$ involves an extrapolation of the measured equivalent conductance in dilute solution to zero concentration. This is one of the best methods of Kohlrausch law.

## Procedure:

A) Determination of cell constant :

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 50 cc of 0.1 N KCl solution in to 100 cc beaker.
5. Place the conductivity cell in the beaker and connect it to the terminals of conductivity meter.
6. Note down the conductance of the solution in mS .
7. Calculate the cell constant.

## B) Determination of equivalent conductivities:

1. Pipette out 50 cc of 0.2 N NaCl solution into 100 cc clean beaker. Place the conductivity cell and note down the conductance in mS .
2. Dilute this solution to 0.1 N by withdrawing 25 cc of the above solution and adding 25 cc distilled water with pipette, stir well and note down the conductance in mS .
3. Similarly, dilute the above solution to $0.05 \mathrm{~N}, 0.025 \mathrm{~N}$ and 0.0125 N , and record the conductance for every dilution.
4. Calculate the specific conductance, equivalent conductance, degree of ionization and dissociation constant $\mathrm{K}_{\mathrm{a}}$.
5. Plot a graph of $\lambda_{c}$ against $\sqrt{ } \mathrm{C}$ which gives a straight line. Intercept of the straight line gives a value of $\lambda_{\infty}$.

## Observations:

A) Determination of cell constant :

1. Observed conductance of 0.1 N KCl soln.

$$
=\ldots \ldots \ldots \times 10^{-3} \mathrm{~S} .
$$

2. Specific conductance of 0.1 N KCl soln. at room temperature $=0.01288 \mathrm{~S} \mathrm{~cm}^{-1}$
3. Determination of cell constant:

$$
\begin{aligned}
\text { Cell constant } & =\frac{\text { Specific conductance of } 0.1 \mathrm{~N} \mathrm{KCl}}{\text { Observed conductance }} \\
& =\frac{0.01288}{\text { Observed conductance }} \\
& =----------\mathrm{cm}^{-1}
\end{aligned}
$$

## B). Determination of equivalent conductivities: $\left(\lambda_{c}\right)$

Concentration of   the solution, C	Observed   conductance   $(\mathrm{S})$	Specific conductance   $\boldsymbol{\kappa}=$ cell constant $\times$   Observed conductance   $\left(\mathrm{S} \mathrm{cm}^{-1}\right)$	Equivalent conductance   $\lambda_{\mathrm{c}}=\underline{1000 \times} \boldsymbol{\kappa}$   $\left(\mathrm{Scm}^{2} \mathrm{eqv}^{-1}\right)$	$\sqrt{ } \mathrm{C}$
0.2 N	$\times 10^{-3}$			
0.1 N	$\times 10^{-3}$			
0.05 N	$\times 10^{-3}$			
0.025 N	$\times 10^{-3}$			
0.0125 N	$\times 10^{-3}$			

1) Determination of equivalent conductivity at infinite dilution ( $\lambda_{\infty}$ )

Plot the graph of $\lambda_{c} \mathrm{v} / \mathrm{s} \sqrt{ } \mathrm{C}$, it gives a straight line


The intercept of the straight line, $\lambda_{\infty}$

$$
=\ldots . . \mathrm{Scm}^{2} \mathrm{eqv}^{-1}
$$

## Result:

The equivalent conductance of NaCl at infinite dilution $\lambda_{\infty \mathrm{NaCl}}=\ldots . . . \mathrm{Scm}^{2} \mathrm{eqv}^{-1}$
Note: Theoretical value of $\lambda_{\infty}$ for NaCl

$$
=126.7 \mathrm{Scm}^{2} \mathrm{eqv}^{-1}
$$

## Expt No. 8

## COLORIMETRY

Aim: Verification of the Beer Lambert's Law by colorimetric method and determination of unknown concentration of ferric $\left(\mathrm{Fe}^{3+}\right)$ ions.

Chemicals: $0.001 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .24 \mathrm{H}_{2} \mathrm{O}$ (Ferric alum) and $2 \% \mathrm{KCNS}$,
Apparatus: Colorimeter, cells, test tubes, test tube stand etc.
Theory: Suppose an intensity of light absorption of a colored solution at a suitable wavelength for various known concentration is determined, using Beer-Lambert's law the unknown concentration of same solution can be determined by measuring absorption at the same wavelength.

Beer-Lambert's states that when beam of light is passed through a coloured solution, decrease in intensity of transmitted light is directly proportional to thickness as well as path length of the solution Mathematically, Beer-Lambert's law can be written as

$\mathrm{I}=\mathrm{I}_{0} \cdot \mathrm{e}^{-\mathrm{kCd}}$	where,
$\ln \mathrm{I}_{0} / \mathrm{I}=\mathrm{k} \mathrm{C} \mathrm{d}$	$\mathrm{I}_{0}=$ Intensity of the incident light
	$\mathrm{I}=$ Intensity of transmitted light
	$\mathrm{C}=$ concentration of a solution
	$\mathrm{d}=$ thickness of a solution
	$\mathrm{k}=$ absorption coefficient

or $\quad \log \mathrm{I}_{\mathrm{o}} / \mathrm{I}=\frac{\mathrm{k} . \mathrm{C} . \mathrm{d}}{2.303} \quad$ or $\quad \mathrm{OD}=\frac{\mathrm{k} . \mathrm{C} . \mathrm{d}}{2.303}=$ Optical Density
or $\mathrm{OD}=\varepsilon \mathrm{Cd} \quad$ where, $\mathrm{OD}=$ Optical Density, i.e., amount of light absorbed by solution of known concentration\& known thickness.
$\varepsilon=\frac{\mathrm{k} .}{2.303}=\quad \begin{aligned} & \text { molar extinction coefficient (constant) } \\ & \text { when ' } \mathrm{C}^{\prime} \text { in mol dm}\end{aligned}$
This principle is extensively used in colorimetric estimation. When the thickness of a solution is $1 \mathrm{~cm}, \mathrm{a}$ slope from the plot of OD Vs Concentration gives $\varepsilon$. The $\left[\mathrm{Fe}^{3+}\right]$ in a colored complex can be estimated colorimetrically.

Reaction: The complex between $\mathrm{Fe}^{3+} \& \mathrm{CNS}^{-}$ions are formed as follows:

$$
\mathrm{Fe}^{3+}+\mathrm{nCNS}^{-} \rightleftharpoons \underset{\sim}{\rightleftharpoons}[\mathrm{Fe}(\mathrm{CNS})]^{(3-\mathrm{n})+}
$$

Procedure:
Ferric thiocyanate complex ion

1. Prepare a stock solution of 0.0001 M ferric alum solution by diluting 10 cc of given 0.001 M Ferric alum solution in to 100 cc .
2. Prepare ferric thiocyanate complex solutions of different concentrations in 08 separate test tubes by adding required volume of 0.0001 M ferric alum solution, $2 \% \mathrm{KCNS}$ solution and distilled water as given in table 2.
3. Selection of suitable filter: Inserting the cell containing solution No. 1 in the colorimeter, adjust the OD to zero. Now using solution No. 5 of moderate concentration, observe the OD for a filter having a lower wave length.
4. Similarly, observe the OD of the same solution for remaining filters of higher wave lengths by setting OD zero to solution No. 1 for every filter. The filter which gives the maximum OD is suitable one.
5. Determination of OD of solutions: Using the suitable filter selected, find out the OD for all the prepared solutions.
6. Plot a graph of OD against concentration of $\mathrm{Fe}^{3+}$, which gives a straight line passing through the origin. This is the verification of Beer-Lambert's law.
7. Determine the concentration of $\mathrm{Fe}^{3+}$ in unknown composition.
8. From the slope of graph, calculate the molar extinction coefficient of complex.

## Observations:

## Table No. 1 Selection of filter using solution no 4

Filter No							
OD							

Remarks: The Filter no.-------nm gives maximum OD. Hence it is selected as suitable filter.
Table No. 2 Determination of OD of Solutions

Sl.No.	0.0001 M Ferric   alum (cc)	Distilled   water (cc)	$2 \%$   KCNS	Concentration of   $\mathrm{Fe}^{3+}$ in mol/dm	OD			
1	0.0	8.0	2.0	0.00000				
2	1.0	7.0	2.0	0.00001				
3	2.0	6.0	2.0	0.00002				
4	3.0	5.0	2.0	0.00003				
5	4.0	4.0	2.0	0.00004				
6	5.0	3.0	2.0	0.00005				
7	6.0	2.0	2.0	0.00006				
8	7.0	1.0	2.0	0.00007				
9	8.0	0.0	2.0	0.00008				
10	Unknown composition							

Nature of the graph


## Calculation of Molar extinction coefficient:

$\boldsymbol{\varepsilon}=\underline{\text { Slope }}=\frac{\text { Slope }}{\text { length }}=\frac{\mathrm{AB}}{\mathrm{BC}}=\ldots \ldots . . \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
Because, 1 (length) $=1 \mathrm{~cm}$
Result: Concentration of $\mathrm{Fe}^{3+=}$ $\qquad$ $\mathrm{mol} / \mathrm{dm}^{3}$

## Expt No. 9 SAPONIFICATION OF ETHYL ACETATE - SECOND ORDER REACTION

Aim: To determine the second order rate constant for hydrolysis of ethyl acetate by sodium hydroxide conductometrically.
Chemicals: 0.1 M Ethyl acetate, 0.1 M NaOH and $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COONa}$ solution.
Apparatus: Conductometer, conductivity cell, beaker, glass rod, burette, pipette etc
Theory : Hydrolysis of ethyl acetate by NaOH is a second order reaction as order with respect to each reactant is one.
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right][\mathrm{NaOH}]$
When both the concentrations are equal ( $a=b$ ), the ' $k$ ' can be calculated by using integrated rate equation: $\quad \boldsymbol{k}=\frac{1 \quad \mathrm{x}}{\mathrm{t} \mathrm{a}(\mathrm{a}-\mathrm{x})} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
Where, ' $x$ ' is concentration of reactant disappeared at a given time, $t$.
' $a-x$ ' is concentration of reactant remained at a given time, $t$.
When a known volume of above reaction mixture is titrated against standard acid, the volume of acid consumed at $t=0$ is ' $a$ ' and volume at definite interval of time, $t$ is ' $a-x$ '. Hence, $x=a-(a-x)$. Since the reaction is second order, the ' $k$ ' for all the interval of time should be constant.

Progress of the reaction can also be followed conductometrically. During reaction, fast moving $\mathrm{OH}^{-}$ions are replaced by slow moving $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion, so that the overall conductance of the solution will decrease progressively. Hence, by measuring decrease in the conductance of NaOH at regular interval of time, the velocity constant can be determined.
i.e. $\quad a \quad \alpha\left(\mathrm{C}_{0}-\mathrm{C}_{\infty}\right)$
$\mathrm{x} \alpha\left(\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{t}}\right)$
$\mathrm{a}-\mathrm{x} \alpha\left(\mathrm{C}_{\mathrm{t}}-\mathrm{C}_{\infty}\right)$
 respectively.
Procedure: 20 cc of $0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{cc}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+40 \mathrm{cc}$ water

1. Pipette out 20 cc of 0.1 M NaOH and 20 cc of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ in two separate clean and dry conical flasks. Add 40 cc water to NaOH solution, stopper both the flasks and keep them in water bath to attain room temperature.
2. Keep the conductivity cell in 100 cc beaker, and connect to the terminals of the conductometer.
3. When the content attains room temperature, pour NaOH and $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ solutions to the above 100cc beaker, stir it properly and note down the conductance immediately by starting the stopwatch simultaneously. This is zero minute conductance ( $\mathrm{C}_{0}$ ).
4. Note down the conductance of the reaction mixture at every 1 minutes till 10 minutes and thereafter for $15,20,25,30,35,40$ and 45 minutes $\left(\mathrm{C}_{\mathrm{t}}\right)$.
5. Measure the conductance of the reaction mixture after 2 hrs from mixing time, (it completes in 2 hrs ) which gives $\mathrm{C}_{\infty}$ or alternatively find out the conductance of $0.025 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ which also gives $\mathrm{C}_{\infty}$.
6. Calculate the second order velocity constant, ' $k$ ' using a suitable equation.
7. Plot a graph of $\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{t}}\right) /\left(\mathrm{C}_{\mathrm{t}}-\mathrm{C}_{\infty}\right)$ against time, which gives a straight line, the slope of the straight line is ' $\boldsymbol{k} \boldsymbol{a}$ '.
Observation : Reaction mixture: $20 \mathrm{cc} 0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{cc} 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+40 \mathrm{cc}$ water


## Calculations:

$$
\mathrm{M}_{\mathrm{NaOH}} \mathrm{X} \mathrm{~V}_{\mathrm{NaOH}}
$$

1. Calculation of initial concentration $\mathrm{a}=----------------$

$$
=\frac{\mathbf{0 . 1 \times 2 0}}{\mathbf{8 0}}=0.025 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\mathbf{k}=\frac{\mathbf{1}\left(\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{t}}\right)}{\mathbf{t ~ a ~}\left(\mathrm{C}_{\mathrm{t}}-\mathrm{C}_{\infty}\right)} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}
$$

2. Calculation of velocity constant

## Nature of the graph:



$$
\begin{array}{ll}
\text { Slope }=A B / B C & k=\text { slope } / \mathrm{a} \\
\mathrm{k}=\text { slope } / 0.025
\end{array}
$$

## Results:


2. Value of $\boldsymbol{k}$ by graphical method $\qquad$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$

Expt. 10
pH metry ( $\mathbf{p H}$ of biological juice)
Aim: To determine the pH of the following biological juices
i) Milk
ii) Orange juice
iii) Lime water
iv) Citric acid v) $\mathrm{NaHCO}_{3}$

Chemicals: Raw milk, Orange fruits, Lime, Citrus fruits, Baking soda
Apparatus: pH meter, glass electrode etc.
Theory: Biological juices like milk and fruit juices will be in good quality only when they have desirable pH values. They may spoil due to change in their pH values. Milk is one of the deliberately flavored, easily changed foods. It is an excellent culture medium for many kinds of microorganisms, being high in moisture nearly neutral in pH . When milk sours, it is usually considered to be as spoiled. On proteolysis (hydrolysis of proteins) milk may turn up into acidic or alkaline in nature. The spoilage of milk and thus change in its pH value occurs due to the microbial action of bacteria like lactostreptococci and micrococci, thermodurics etc. Low temperature always favors to maintain good quality of milk i.e below $7.2^{\circ} \mathrm{C}$.

Further, in fruit juices under normal course of changes an alcoholic fermentation occurs at ordinary temperature. It leads to change in their pH value followed by spoilage. Low temperatures help to maintain the desirable pH and thus minimize the spoilage.

The dissolution of Quick lime or Lime $(\mathrm{CaO})$ in water is regarded as highly exothermic in nature. Its cold and filtered clear solution $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ i.e lime water shows alkalinilty.

Similarly, the Baking soda $\left(\mathrm{NaHCO}_{3}\right)$ is lass soluble in water. Its solution shows the alkalinity. pH of all such solutions can be ascertained before usage using pH meter.

## Procedure:

1. Standardize the pH meter as mentioned on the instrument. (May be using the standard solutions of known (minimum) $\mathrm{pH}=4.0$ and known (maximum) $\mathrm{pH}=9.2$ with the help of glass electrode or with the adjustment by screw driver).
2. Collect the raw milk (not dairy milk), filtered orange juice, citrus fruit, supernatant solution of lime, baking soda, etc
3. Take 25 cc of each juice or solution into a beaker. Dip the glass electrode into it.
4. Connect the glass electrode to the terminals of pH meter and record the pH and then tabulate.
5. Write the nature of the solution or the juice (Acidic/Alkaline)

## Observations:

Biological juices or   solutions	pH	Acidic/Alkaline
Raw milk		
Orange juice		
Lemon juice		
Lime water		
Baking soda		

## Result:

1. Raw milk is found to be slightly acidic, where as orange juice and Lemon juice are highly acidic.
2. Lime water and Baking soda are found to basic in nature.

## Note:

1. Raw milk should be used for the test but not dairy milk.
2. Fruits should be squashed, juice should be filtered and pure juice may be used for the test.
3. For lime water, 56 gm of Lime $(\mathrm{CaO})$ should be dissolved in one litre of water. It gives milk of lime. Cool and filter it to get clear solution of lime water. Take this lime water solution for the test.
4. For baking soda, 84 gm of baking soda $\left(\mathrm{NaHCO}_{3}\right)$ should be dissolved in one litre of water. Filter it to get a clear solution. Take this solution for the test.
5. Preserve the glass electrode always in wet condition by keeping it in sat. KCl . Solution.

## Expt. No. 11 PARTIAL MISCIBILITY OF LIQUIDS

Aim: To determine the critical solution temperature of two partially miscible liquids (water and phenol).
Chemicals: Pure Phenol.
Apparatus: 09 hard glass test tubes, glass ring stirrer, air jacket (large tube), thermometer $\left(1 / 10^{\text {th }}{ }^{\circ} \mathrm{C}\right)$
Theory: Critical solution temperature is a temperature at which, two partially miscible liquids become completely miscible. Phenol and water are such a pair partially miscible liquids at room temperature. They become miscible at a particular temperature with a particular composition by weight. In order to determine the mutual solubility curve of this system a synthetic method is followed. Known amounts of different composition of two liquids are warmed slowly and temperature is recorded at which the two layers just disappear, that is turbidity just disappears. The temperature is once determined at the appearance of turbidity when the system is cooled. The mean of the two temperatures gives the miscibility temperature of two liquids in that proportion.

## Procedure:

1. Take eight thoroughly cleaned and dried hard glass test tubes and label them as 1 to 8 .
2. Since phenol is hygroscopic and caustic in nature, add it from burette $8,7 \ldots \ldots .1$. cc to the each of the above test tubes and $1,2,3, \ldots \ldots . .8 \mathrm{cc}$ of distilled water in each test tube as shown in table.
3. Insert the thermometer and a small glass ring stirrer into one of these tubes. Mount the tube in a large glass tube (as air jacket) suspended in large beaker containing water.
4. Heat the water in the beaker slowly with constant stirring so as to have the uniform temperature. Stir well the phenol solution and record the temperature when the turbidity just disappears.
5. Remove the source of heating and allow the water in the beaker to cool slowly with constant stirring. When the turbidity begins to appear due to partial miscibility, record the temperature. The average of two readings gives the temperature of complete miscibility of the two liquids.
6. Repeat the determination more cautiously allowing the temperature to change more slowly in the vicinity of the above temperature.
7. In the same way determine the temperature of complete miscibility for other phenol solutions.
8. Plot a graph of the miscibility temperatures and the composition of the solution in percentage (weight / weight). The smooth curve will be the parabolic in shape, the maximum of which gives the critical solution temperature of phenol and water system.

## Observations:

a. Density of Phenol= $0.8 \mathrm{~g} / \mathrm{cc}$
b. Density of Water $=1.0 \mathrm{~g} / \mathrm{cc}$

$\begin{aligned} & \text { Test } \\ & \text { tube } \\ & \text { No. } \end{aligned}$	Volume of   Water	Volume of   Phenol	Phenol (Wt/V) gram	Total weight of mixture (gram)	\% of phenol in water (Wt/Wt)	Temperature At which turbidity (two layers) disappears ( ${ }^{\circ} \mathrm{C}$ )	Temperature at which turbidity appears $\left({ }^{\circ} \mathrm{C}\right)$	Mean Temp $\left({ }^{\circ} \mathrm{C}\right)$
1	2 cc	8cc	6.4	8.4	73.8			
2	3 cc	7 cc	5.6	8.6	65.1			
3	4 cc	6 cc	4.8	8.8	54.5			
4	5 cc	5 cc	4.0	9.0	44.4			
5	6 cc	4 cc	3.2	9.2	34.8			
6	7 cc	3 cc	2.4	9.4	25.5			
7	8 cc	2 cc	1.6	9.6	16.7			
8	9 cc	1cc	0.8	9.8	08.2			

## Calculation

1. Weight of phenol =Density x volume of phenol $=\ldots . . \mathrm{g}$
2. Percentage of phenol $($ Weight $/$ Weight $)=($ Weight of phenol $x$ 100 $) /$ Total weight of mixture
3. The value of $\mathrm{CST}=$ $\qquad$ ${ }^{\circ} \mathrm{C}$
4. Percentage of phenol at $\mathrm{CST}=$

## Nature of Graph



## Result:

1. Experimental value of $\mathrm{CST}=$ $\qquad$
2. Percentage of phenol at CST- $\qquad$

Note: 1. Theoretical value of $\mathrm{CST}=66^{\circ} \mathrm{C}$
2. Theoretical Percentage of phenol at $\mathrm{CST}=34$

## B.Sc. VI Sem : Paper - I <br> Inorganic Experiments

Total No of hours /week: 04Hrs.
Total No. of Hours : 52Hrs.

Pract. : 40 Marks
I. A. : 10 Marks

CONTENTS		
		age No.
	I. Inorganic Gravimetric Analysis	
	Introduction to Inorganic Gravimetric Analysis	
1.	Determination of Barium as $\mathrm{BaSO}_{4}$	187
2.	Determination of Aluminium as $\mathrm{Al}_{2} \mathrm{O}_{3}$	189
3.	Determination of Iron as $\mathrm{Fe}_{2} \mathrm{O}_{3}$	191
4.	Determination of Lead as $\mathrm{PbSO}_{4}$	193
II. Inorganic Volumetric Analysis		
	Introduction to Inorganic Volumetric Analysis	
1.	Determination of percentage of iron in haematite ore or $\mathrm{Solid}_{\mathrm{Fe}}^{2} \mathrm{O}_{3}$	195
2.	Determination of percentage of copper in brass	198
3.	Determination of percentage of calcium in limestone	201
III. Inorganic preparations		
	Preparation of the following Compounds	
1.	transpotassiumdiaquobis(oxalato)chromium(III)	204
2.	tris(thiourea)copper(I)sulphate	205
3.	bis(dimethylglyoximato)nickel(II)	206
4.	Sodiumtris(oxalato)ferrate(III)	207
	IV : Ion exchange process: Separation of Mg(II) and Fe(II) by ion exchange method	208

## Gravimetric Analysis

The quantitative chemical analysis that involves the determination of the constituent by weighing is called the gravimetric analysis. i.e. The process of isolation and weighing an element or a definite compound of the element in an as pure form as possible. A large portion of the determination in gravimetric analysis is concerned with the transformation of the element or radical to be determined in to pure stable compound, which can be readily converted into a form suitable for weighing. The weight of the element or radical may be readily calculated by knowing the formula of the compound and atomic weight of the constituent elements.

Gravimetric analysis involves the following steps

1. Preparation of solution of the known amount of substance
2. Separation of the substance to be estimated from solution as ppt.- Precipitation
3. Digestion or heating the precipitate.
4. Filtration and washing the precipitate.
5. Drying and ignition of the precipitate.
6. Weighing dried or ignited precipitate.
7. Calculation of the constituents.

## Distribution of marks of Gravimetric Experiments

Accuracy	$: 16$ marks
Proper Technique \& Calculation	$: 04$ "
Practical Record	$: 05$ ",
Viva Voce	$: 05$ ",
Tour report or Project Report	$: 10$ ",
Total	$\mathbf{4 0}$ Marks


Deduction of Marks for Accuracy      $\pm 6 \mathrm{mg}$      $\pm 8 \mathrm{mg}$	14 marks
$\pm 10 \mathrm{mg}$	12 marks
$\pm 12 \mathrm{mg}$	10 marks
$\pm 14 \mathrm{mg}$	08 marks
$\pm 16 \mathrm{mg}$	06 marks
Above $\pm 16 \mathrm{mg}$	00 marks

## Gravimetric Determinations

## 1. Determination of Barium as $\mathrm{BaSO}_{4}$

Aim: To determine the amount of Barium as $\mathrm{BaSO}_{4}$ present in a given solution.
Apparatus: Watch glass, Beaker, Funnel, silica crucible, desiccators etc.
Chemical: $\mathrm{BaCl}_{2}$ solution, Conc. $\mathrm{HCl}, 5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ Solution etc.
Outline: Barium from the solution is precipitated as barium sulphate by the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to the acidified hot solution. The precipitate is digested, filtered washed with water till it is free from sulphate and chloride ions. It is then dried, ignited and weighed as $\mathrm{BaSO}_{4}$.

## Procedure:

1. Dilute the given barium chloride solution up to the mark with distilled water in 250 cc volumetric flask.
2. Shake it well and pipette out 25 cc in to a clean 250 cc beaker with the help of a pipette.
3. Introduce a glass rod in to the beaker at this stage and it should not be taken out till the precipitate is completely transferred to filter paper.
4. Dilute it to about 100 cc with distilled water (Add about 75 cc distilled water) and 1-2cc conc. HCl . Heat the solution to boiling.
5. Heat about 20 cc of $5 \%$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a small beaker and add it to hot barium solution drop wise with constant stirring till the precipitation of $\mathrm{BaSO}_{4}$ is complete.
6. Cover the beaker partially with a watch glass and digest the precipitate on a sand bath for about 45 minutes for Digestion of the precipitate (i.e. heating the solution just short of boiling without actually boiling which granulates the precipitate).
7. Allow the precipitate to settle. Test the supernatant solution by adding a few drops of $5 \%$ sulphuric acid solution for complete precipitation.
8. Clean the crucible by heating the crucible with 1 cc conc. $\mathrm{HNO}_{3}$ by placing on wire gauze and cool, wash with water, wipe out with clean cloth. Heat it by placing on pipe-clay triangle supported by tripod stand for 10 minutes with non-luminous (Blue)flame. Cool on tripod stand for 10 minutes and transfer it with a clean pair of tongs to desiccator. After thorough cooling weigh the crucible and note down the weight $\left(\mathrm{W}_{1}\right)$.
9. Take Whatman's filter paper no. 41 circle and fold it along a diameter to form a semicircle. Fold again symmetrically so as to form four folds. Open one fold on side \& three on the other side to form a cone. Attach filter paper cone properly to the funnel in such a way that it touches the funnel only along its edges leaving the filter paper cone hanging \& moisten it with few drops of distilled water.
10. Decant the supernatant solution carefully through Whatman's filter paper no. 41 without disturbing the precipitate.
11. Wash the precipitate with hot distilled water ( $100-120 \mathrm{ml}$ ) for several times in the beaker itself and then transfer it quantitatively to the filter paper, using the policeman to detach the particles from the sides of the beaker.
12. Wash the precipitate again with hot water till the filtrate is free from sulphate and chloride ions (test the filtrate with dil. $\mathrm{BaCl}_{2} \& \mathrm{AgNO}_{3}$ solutions which should not give white ppt. with both).
13. Drain the filter paper thoroughly. Dry the precipitate partially on a hot air cone and incinerate it along with the filter paper in a previously weighed crucible.
14. First heat slowly till the precipitate dries and filter paper gets charred then strongly till the residue becomes white. Then heat strongly either in a burner or electrical Incinerator or Muffle furnace. If the crucible is blackened due to preliminary heating, by turning the crucible repeatedly and carefully ignited by the flame until all the carbon has been burned off: the crucible becomes white as before. The white residue is $\mathrm{BaSO}_{4}$.
15. Heat the crucible for another 10 minutes, cool, desiccate and weigh. Note down the weight of the residue. Again heat it for 10 minutes, cool, desiccate and weigh it again and note down the weight of the residue. (Heating, cooling and desiccating and weighing the crucible is repeated till a constant weight is obtained.)
16. From the weight of $\mathrm{BaSO}_{4}$ obtained calculate the amount of barium present in the given solution.

## Equations: $\mathbf{B a C l}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}} \longrightarrow \underset{\text { barium sulphate }}{\mathrm{BaSO}_{4} \downarrow+\mathbf{2 H C l}}$

1 gram mole of $\mathrm{BaSO}_{4} \equiv 1$ gram mole of Ba

$$
233.42 \mathrm{~g} \mathrm{BaSO}_{4} \equiv 137 \text { gram mole of } \mathrm{Ba}
$$

$1 \mathrm{~g} . \mathrm{BaSO}_{4} \equiv 0.5887 \mathrm{~g} \mathrm{Ba}$
Observations: 1 . Weight of the empty crucible $=\mathrm{W}_{1}=---\mathrm{g}$
2. Weight of the crucible + residue $=\mathrm{W}_{2}=---\mathrm{g}$
3. Weight of the residue $\left(\mathrm{BaSO}_{4}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=---\mathrm{g}$

## Calculations

1. Weight of the residue $\left(\mathrm{BaSO}_{4}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=----\mathrm{g}$
2. Amount of Barium present in 25 cc of the given solution $=\mathrm{X}=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 0.5887=\ldots \mathrm{g}$
3. Amount of Barium present in 250 cc of the given solution $=\mathrm{X} \times 10=$..' ${ }^{\prime}$.. $g$
4. Amount of Barium present in $1 \mathrm{dm}^{3}$ of the given solution $=X \times 40=\ldots \mathrm{g}$ Or ' $a$ ' $\times 4=\ldots \mathrm{g}$

## Result:

1.Weight of the residue $\left(\mathrm{BaSO}_{4}\right)$ $\qquad$ g
2.Amount of Barium present in 25 cc of the given solution $\qquad$
3.Amount of Barium present in 250 cc of the given solution $\qquad$
4.Amount of Barium present in $1 \mathrm{dm}^{3}$ of the given solution $\qquad$

## 2. Determination of Aluminium as $\mathrm{Al}_{2} \mathrm{O}_{3}$

Aim: To determine the amount of aluminium $(\mathrm{Al})$ as $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the given solution.
Apparatus: Watch glass, beaker, funnel, silica crucible, desiccator etc..
Chemicals: $\mathrm{AlCl}_{3}$ solution, $\mathrm{NH}_{4} \mathrm{Cl}, 1: 1 \mathrm{NH}_{4} \mathrm{OH}, 1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ etc.
Outline: Aluminium is precipitated as $\mathrm{Al}(\mathrm{OH})_{3}$ by adding $\mathrm{NH}_{4} \mathrm{OH}$ to the hot \& dilute solution of potash alum in presence of ammonium chloride at a pH of $4-6 . \mathrm{NH}_{4} \mathrm{Cl}$ controls the pH of the solution by exerting buffer effect and also assists the coagulation of the initially colloidal precipitate. $\mathrm{Al}(\mathrm{OH})_{3}$ is filtered, washed with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$, dried, ignited and weighed as $\mathrm{Al}_{2} \mathrm{O}_{3}$.

## Procedure:

1. Dilute the given aluminium solution up to the mark with distilled water in the 250 cc volumetric flask and shake it well.
2. Pipette out 50 cc of the diluted solution in to a clean 250 cc beaker and dilute to about 100 cc with distilled water.
3. Add $1-2 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{Cl}$ and few drops of methyl red indicator and heat it boiling.
4. Precipitate the Al by adding $1: 1 \mathrm{NH}_{4} \mathrm{OH}$ solution drop wise with constant stirring till the colour of the solution changes to distinct yellow.
5. Stir and boil it for a minute and allow the precipitate to settle for few minutes.
6. Decant the supernatant solution immediately through a Whatman's filter paper No. 41 moistened with $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution.
7. Take Whatman's filter paper no. 41 circle and fold it along a diameter to form a semicircle. Fold again symmetrically so as to form four folds. Open one fold on side \& three on the other side to form a cone. Attach filter paper cone properly to the funnel in such a way that it touches the funnel only along its edges leaving the filter paper cone hanging \& moisten it with few drops of $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution.
8. Wash the precipitate at least twice with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution in the beaker itself till the filtrate is free from sulphate ions (test with $\mathrm{BaCl}_{2}$ solution \& it should not give white ppt.or turbidity) but need not be free from chloride. (Filtration becomes difficult in the cold condition due to the clogging of pores of the filter paper by gelatinous $\mathrm{Al}(\mathrm{OH})_{3} \&$ hence filter the ppt. when solution is hot.) Wash it again with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution.
9. Partially dry the precipitate on a hot air cone and incinerate it along with the filter paper in a previously weighed crucible.
10. Clean the crucible by heating the crucible with 1 cc conc. $\mathrm{HNO}_{3}$ by placing on wire gauze and cool (this operation is omitted when it is free from dark color), wash with water and wipe out with clean
cloth. Heat it by placing on pipe-clay triangle supported by tripod stand for 10 minutes with nonluminous (Blue)flame. Cool on tripod stand for 10 minutes and transfer it with a clean pair of tongs to desiccator. After thorough cooling weigh the crucible and note down the weight( $\mathrm{W}_{1}$ ).
11. First heat gently to char the filter paper with a low flame and then slowly increase the flame. Ignite the crucible to red hotness till the residue becomes white, for about 30 minutes. Cool, desiccate and weigh.
12. First heat slowly till the precipitate dries and filter paper gets charred then strongly till the residue becomes white. Then heat strongly either in a burner or electrical Incinerator or Muffle furnace. If the crucible is blackened due to preliminary heating, by turning the crucible repeatedly and carefully ignited by the flame until all the carbon has been burned off: the crucible becomes white as before.
13. Repeat the process of heating, cooling and weighing till a constant weight is obtained.
14. The white residue is $\mathrm{Al}_{2} \mathrm{O}_{3}$. From the weight of the residue obtained, calculate the amount of Al in the given solution.

## Equations:

$$
\begin{aligned}
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NH}_{4} \mathrm{OH} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} 2 \mathrm{Al}(\mathrm{OH})_{3} \downarrow+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\
& 2 \mathrm{Al}(\mathrm{OH})_{3} \xrightarrow{\Delta} \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
& 1 \mathrm{~g} \text { mole of } \mathrm{Al}_{2} \mathrm{O}_{3} \equiv 2 \mathrm{Al} \\
& 102 \mathrm{~g} \text { of } \mathrm{Al}_{2} \mathrm{O}_{3} \equiv 54 \mathrm{~g} \mathrm{Al} \\
& 1 \mathrm{~g} \text { of } \mathrm{Al}_{2} \mathrm{O}_{3} \equiv 0.529 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

## Observations

$$
\begin{array}{ll}
\begin{aligned}
& \text { 1. Weight of the empty crucible }=\mathrm{W}_{1}=----\mathrm{g} . \\
& \text { 2. Weight of the crucible }+ \text { residue }=\mathrm{W}_{2}=----\mathrm{g} . \\
& \text { 3. Weight of the residue }\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=- \text {---g. } \\
& \text { Calculations: } \\
& \text { 1. Weight of the residue }\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right)=----\mathrm{g} .
\end{aligned}
\end{array}
$$

2. Amount of Al present in the given diluted 50 cc solution $=\mathrm{X}=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 0.529=---\mathrm{g}$
3. Amount of Al present in the given diluted 250 cc solution $=\mathrm{X} \times 5=---\mathrm{g} .=$..'a'g
4. Amount of Al present in the given diluted $1 \mathrm{dm}^{3}$ solution $=\mathrm{X} \times 20=$ ' $\mathrm{a} \times 4=---\mathrm{g}$.

## Result:

1. Weight of the residue $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ $\qquad$ g
2. Amount of Al present in 50 cc of the given solution $\qquad$
3. Amount of Al present in 250 cc of the given solution $\qquad$
4. Amount of Al present in $1 \mathrm{dm}^{3}$ of the given solution $\qquad$

## 3. Determination of Iron as $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Aim:To determine the amount of iron as $\mathrm{Fe}_{2} \mathrm{O}_{3}$ present in a given solution.
Apparatus: Watch glass, Beaker, Funnel, silica crucible, desiccator etc.
Chemical: Iron solution, conc. HC 1 , conc. $\mathrm{HNO}_{3}, \quad \mathrm{NH}_{4} \mathrm{Cl}, 1: 1 \mathrm{NH}_{4} \mathrm{OH}, 1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ etc.
Outline: Iron is precipitated as $\mathrm{Fe}(\mathrm{OH})_{3}$ by the addition of $1: 1 \mathrm{NH}_{4} \mathrm{OH}$ to the hot and diluted iron solution in presence of $\mathrm{NH}_{4} \mathrm{Cl}$. The precipitate, $\mathrm{Fe}(\mathrm{OH})_{3}$ is washed with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution, filtered and dried. It is then ignited and weighed as $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

## Procedure:

1. Dilute the given iron solution up to the mark in 250 cc volumetric flask with distilled water.

Shake it well and pipette out 50 cc of the diluted solution in to a clean 250 cc beaker.
2. Add 1 cc of conc. $\mathrm{HCl} \& 1-2 \mathrm{cc}$ of conc. $\mathrm{HNO}_{3}$ and boil till the solution becomes deep yellow or orange in colour. This is to oxidize any unoxidised $\mathrm{Fe}^{2+}$ to $\mathrm{Fe}^{3+}$. (This operation may be omitted if the solution is already deep yellow in colour).
3. Dilute it to about 100 cc with distilled water (Add about 50 cc distilled water). Add $1-2 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{Cl}$ and heat it boiling.
4. Precipitate the iron as $\mathrm{Fe}(\mathrm{OH})_{3}$ by adding $1: 1 \mathrm{NH}_{4} \mathrm{OH}$ solution(approximately $1-1 / 1 / 3 \mathrm{TT}$ ) drop wise till the reddish brown precipitate is obtained \& beaker smells ammonia after stirring.
5. Stir and boil it for a minute and allow the precipitate to settle for few minutes.
6. Take Whatman's filter paper no. 41 circle and fold it along a diameter to form a semicircle. Fold again symmetrically so as to form four folds. Open one fold on side \& three on the other side to form a cone. Attach filter paper cone properly to the funnel in such a way that it touches the funnel only along its edges leaving the filter paper cone hanging
7. \& moisten it with few drops of $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution.
8. Decant the supernatant solution through funnel attached with Whatman's filter cone.
9. Wash the precipitate at least twice with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution in the beaker itself (Filter the ppt. in the hot condition only).
10. Transfer the precipitate to the filter paper and wash it again with hot $1 \% \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution (test with $\mathrm{AgNO}_{3}$ ) till it is free from chloride.
11. Partially dry the precipitate on a hot air cone and incinerate it along with the filter paper in a previously weighed crucible.
12. Clean the crucible by heating the crucible with 1 cc conc.. $\mathrm{HNO}_{3}$ by placing on wire gauze and cool (this operation is omitted when it is free from dark color), wash with water and wipe out with clean cloth. Heat it by placing on pipe-clay triangle supported by tripod stand for 10 minutes with non-
luminous (Blue)flame. Cool on tripod stand for 10 minutes and transfer it with a clean pair of tongs to desiccator. After thorough cooling weigh the crucible and note down the weight $\left(\mathrm{W}_{1}\right)$.
13. 13. First heat slowly till all the filter paper is charred and then strongly for about 30 minutes.If the crucible is blackened due to preliminary heating, by turning the crucible and carefully ignited by the flame until all the carbon has been burned off: the crucible becomes white as before.
14. Heat the crucible for another 10 minutes, cool, desiccate and weigh. Again heat it for 10 minutes, cool, desiccate and weigh it again and note down the weight of the residue.
15. After cooling and desiccating, weigh it to a constant weight.
16. Residue is $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (dark brown). From the weight of the residue obtained, calculate the amount iron in the given solution.

Equations

$$
\begin{gathered}
\mathrm{FeCl}_{3}+3 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3} \downarrow+3 \mathrm{NH}_{4} \mathrm{Cl} \\
2 \mathrm{Fe}(\mathrm{OH})_{3} \xrightarrow{\Delta} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{~g} \mathrm{~mol} \text { of } \mathrm{Fe}_{2} \mathrm{O}_{3} \equiv 2 \mathrm{Fe} \\
\text { i.e. } 159.7 \mathrm{~g} \mathrm{~mol} \text { of } \mathrm{Fe}_{2} \mathrm{O}_{3} \equiv 111.7 \mathrm{~g} \mathrm{~mol} \mathrm{Fe} \\
1 \mathrm{~g} \text { of } \mathrm{Fe}_{2} \mathrm{O}_{3} \equiv 0.6993 \mathrm{~g} \mathrm{Fe} .
\end{gathered}
$$

## Observations

1. Weight of the empty crucible $=\mathrm{W}_{1}=----\mathrm{g}$.
2. Weight of the crucible + residue $=W_{2}=----g$.
3. Weight of the residue $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=----\mathrm{g}$.

## Calculations:

1. Weight of the residue $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right)=----$ g.
2. Amount of Fe present in 50 cc of the given solution $=\mathrm{X}=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 0.6993 \mathrm{~g}$
3. Amount of Fe present in 250 cc of the given solution $=\mathrm{X} \times 5=--\mathrm{g}={ }^{\prime} \mathrm{a}^{\prime} \mathrm{g}$
4. Amount of Fe present in the given diluted $1 \mathrm{dm}^{3}$ solution $=X \times 20={ }^{\prime} \mathrm{a}^{\prime} \times 4=--\mathrm{g}$.

## Result:

1. Weight of the residue $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ $\qquad$
2. Amount of Fe present in 50 cc of the given solution $\qquad$
3. Amount of Fe present in 250 cc of the given solution $\qquad$
4. Amount of Fe present in the given diluted $1 \mathrm{dm}^{3}$ solution $\qquad$

## 4. Determination of lead as $\mathrm{PbSO}_{4}$

Aim: To determine lead as lead sulphate in the given solution of lead nitrate or lead acetate.
Apparatus: Watch glass, beaker, funnel, silica crucible \& desiccator etc.
Chemicals required :Lead solution, Dil. Sulphuric acid, rectified spirit etc.
Outline: Lead is precipitated as lead sulphate by the addition of cold and dil. sulphuric acid to the cold and dilute solution of lead nitrate or acetate. Precipitation is completed by the addition of rectified spirit. The white precipitate of lead sulphate is filtered, washed with $1 \%$ cold solution of sulphuric acid till free from sulphate. Dried, ignited and weighed as $\mathrm{PbSO}_{4}$.

## Procedure:

1. Dilute the given lead nitrate (acetate) solution up to the mark in 250 cc volumetric flask with distilled water.
2. Shake it well and pipette out 25 cc of the diluted solution into a clean 250 cc beaker.
3. Dilute it to about 100 cc with distilled water (Add about 75 cc distilled water).
4. Add cold $5 \%$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (about 20 cc ) drop wise with constant stirring and allow the precipitate to settle and add few more drops of dilute sulphuric acid to the supernatant liquid.
5. Finally complete the precipitation by the addition of 50 cc of rectified spirit and keep it for half an hour.
6. Decant the supernatant solution through a Whatman's filter paper No. 42 moistened with $1 \%$ cold solution of sulphuric acid.
7. Wash the precipitate at least twice with $1 \%$ cold solution of sulphuric acid in the beaker itself.
8. Transfer the precipitate to the filter paper and wash it again with $1 \%$ cold solution of sulphuric acid (test with $\mathrm{AgNO}_{3}$ ) till it is free from chloride.
9. Then wash with $5 \%$ rectified spirit till free from sulphate ions (no white ppt. with $\mathrm{BaCl}_{2}$ ). Drain the filter paper thoroughly.
10. Partially dry the precipitate on a hot air cone and incinerate it along with the filter paper in a previously weighed crucible.
11. First heat slowly till all the filter paper gets charred and then strongly for about 30 minutes (use low flame\& single burner). After cooling and desiccating, weigh it to a constant weight.
12. White residue obtained is $\mathrm{PbSO}_{4}$. From the weight of the residue obtained, calculate the amount of lead in the given solution.
Equations: $\quad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\underset{1}{1 \text { gram mole of } \mathrm{PbSO}_{4}} \mathrm{H}_{2} \mathrm{HO}_{4} \longrightarrow 1$ gram mole of Pb .
$303.27 \mathrm{~g} \mathrm{PbSO}_{4} \equiv 207.21$ gram mole of Pb .
$1 \mathrm{~g} \mathrm{PbSO} 4=0.6833 \mathrm{~g} \mathrm{~Pb}$.

## Observations:

1. Weight of the empty crucible $=\mathrm{W}_{1}=----\mathrm{g}$
2. Weight of the empty crucible + residue $=\mathrm{W}_{2}=----\mathrm{g}$
3. Weight of the residue $\left(\mathrm{PbSO}_{4}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=----\mathrm{g}$

## Calculations

1. Weight of the residue $\left(\mathrm{PbSO}_{4}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=----\mathrm{g}$
2. Amount of lead present in 25 cc of the given solution $=\mathrm{X}=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \times 0.6833 \mathrm{~g}$
3. Amount of lead present in 250 cc of the given solution $=\mathrm{X} \times 10=$ 'a' ..g
4. Amount of lead present in $1 \mathrm{dm}^{3}$ of the given solution $=\mathrm{X} \times 40=--\mathrm{g}$ Or ' $\mathrm{a} \times \times 10=\ldots \mathrm{g}$

Result:

1. Weight of the residue $\left(\mathrm{PbSO}_{4}\right)----\mathrm{g}$
2. Amount of lead present in 25 cc of the given solution $\qquad$
3. Amount of lead present in 250cc of the given solution $\qquad$
4. Amount of lead present in $1 \mathrm{dm}^{3}$ of the given solution $\qquad$

## Volumetric Analysis

Volumetric analysis is quantitative chemical analysis carried out by determining the volume of solution (whose concentration is accurately known) required to react with a measured volume of a solution of unknown concentration. It involves the estimation of a substance in solution either by precipitation, neutralisation, oxidation and reduction by means of a solution of known strength.

## Types of titration:

1. Neutralization titration/Acid-base titration
2. Redox titration
3. Iodometric and iodimetric titration
4. Precipitation titration
5. Complexometric titration

## Distribution of marks of Volumetric Experiments

Accuracy (Titre values $2 \times 5$ ) : 10 marks
Proper Technique : 02 ,
Calculation : 02 ,
Practical Record : 05 ,
Viva Voce : 05 ,
Tour report or Project Report : 10 ,
$\pm 0.2 \mathrm{cc} \quad 10$ marks
$\pm 0.4 \mathrm{cc} \quad 08$ marks
$\pm 0.6 \mathrm{cc} \quad 06$ marks
$\pm 0.8 \mathrm{cc} \quad 04$ marks
Above $\pm 0.9 \mathrm{cc} \quad 00$ marks

## Distribution of marks of Preparation of complex Experiments

Yield of the Complex : 06 marks

## Deduction of Marks for Accuracy for Preparation Experiments

Error in yield less than 10\% 06 marks
11-15\% 05 marks
16-20\% 04 marks
21-25\% 03 marks
26-30\% 02 marks
More than 30\% 00 marks

## Volumetric Determinations

1. Determination of percentage of iron in haematite ore or $\mathrm{Solid}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}$.

Aim: To extract Iron(III) from haematite ore or solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and to determine the percentage of iron in the solution using standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (internal indicator method).
Apparatus:Burette, Pipette, Conical flask, volumetric flask, funnel, beaker etc.
Chemicals: Haematite ore (solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ), Conc. $\mathrm{HNO}_{3}$, Conc. $\mathrm{HCl}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \quad \mathrm{HgCl}_{2}$, $\mathrm{SnCl}_{2}, 2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, Phosphoric acid, Diphenylamine indicator etc.

Outline:This is a redox titration, in which ferric iron present in the solution is prepared by dissolving Haematite ore or solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ sample in acidic solution. It is first reduced to ferrous state by adding $\mathrm{SnCl}_{2}$ in hot condition and then oxidized to ferric state again by titrating against a standard solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in presence of sulphuric acid and phosphoric acid using diphenylamine indicator.

## Procedure:

1. Weigh about 1 g of haematite ore (solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) in a watch glass. Transfer it completely to a 250 cc beaker. Add few ccs of $1: 1 \mathrm{HCl}$ (about 7-8cc), 2 cc Conc. HCl and 1cc Conc. $\mathrm{HNO}_{3}$.
2. Evaporate the solution on a sand bath to a volume of $1-2 \mathrm{cc}$, but not to dryness. Add about 50 cc of distilled water and heat on the sand bath for 8-10 minutes in order to dissolve all soluble material.
3. Stir it well and filter if necessary through Whatman filter paper no.42. Transfer the filtrate and washings to 250 cc volumetric flask.
4. Dilute the $\mathrm{Fe}^{3+}$ solution in 250 cc volumetric flask up to the mark with distilled water and shake it well.
5. Weigh 0.613 g potassium dichromate (mol.wt. $=298.18$; Eq.wt. $=49.06$ ) crystals on a watch glass. Transfer the crystals to beaker with the help of little distilled water and dissolve them completely.
6. Transfer the solution obtained to the 250 cc volumetric flask, using a funnel. Wash the beaker 2-3 times and collect washings in the same volumetric flask. Make the solution up to the mark with distilled water. Shake it well for uniform concentration and fill it in the burette.
7. Pipette out 25 cc of $\mathrm{Fe}^{3+}$ solution into a clean 250 cc conical flask. Add 2 cc of Conc. $\mathrm{HCl} \&$ heat the solution to boiling. To the hot solution add $\mathrm{SnCl}_{2}$ drop wise with constant shaking until the solution just turns colourless and then add a drop more.
8. Cool the solution rapidly under tap (cold water). Add 10 cc of $\mathrm{HgCl}_{2}$ in one lot. A silky white precipitate should be obtained (Reject if black precipitate or excess precipitate is obtained).
9. Add $20 \mathrm{cc}\left(2\right.$ test-tube full) of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 5 \mathrm{cc}(1 / 2 \mathrm{TT})$ of phosphoric acid and 2-3 drops of diphenylamine indicator.
10. Titrate the solution against standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution till colour of the solution changes from pale green to deep violet colour which remains permanent on shaking.
11. Record the burette reading and repeat the titration till three readings agree closely. The amount of ferric iron in given ore or solution is calculated using the accurate readings.

## Observations:

## Part A

I. Weighing of haematite ore (solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ )

1. Weight of empty watch glass $=W_{1}=---g$
2. Weight of watch glass + haematite ore $\left(\operatorname{solid} \mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\mathrm{W}_{2}=---\mathrm{g}$
3. Weight of haematite ore $\left(\operatorname{solid} \mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\mathrm{W}_{2}-\mathrm{W}_{1}=\ldots . \mathrm{g}$

## II. Preparation of standard $0.05 \mathrm{~N} \mathrm{~K} \mathbf{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution

Molecular weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=298.18$ Equivalent weight $=49.03$
Amount of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals to be weighed to prepare 250 cc of 0.05 N solution

$$
\mathrm{w}=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.05 \times 49.03 \times 250}{1000}=0.613 \mathrm{~g} \text { or }
$$

For 100 cc of 0.05 N solution

$$
\mathrm{w}=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.05 \times 49.03 \times 100}{1000}=0.245 \mathrm{~g}
$$

## III. Weighing of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals

1. Weight of empty watch glass $=\mathrm{W}_{1}=---\mathrm{g}$
2. Weight of watch glass $+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals $=\mathrm{W}_{3}=---\mathrm{g}$
3. Weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ crystals $=\mathrm{W}_{3}-\mathrm{W}_{1}=$ $\qquad$ $.0 .613 / 0.245 \mathrm{~g}$

## Part B

1. Solution in burette $=0.05 \mathrm{~N} \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
2. Solution in conical flask $=25 \mathrm{cc} \mathrm{Fe}{ }^{3+}$ solution(hot) $+\mathrm{SnCl}_{2}$ (till just colourless) cooled $+10 \mathrm{cc} \mathrm{HgCl}_{2}$, (silky white ppt) $+20 \mathrm{cc} \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{cc}$ phosphoric acid
3. Indicator - Diphenylamine
4. Colour change- pale green to violet.
5. Reactions

$$
\begin{aligned}
\text { Reactions } \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} & \longrightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} & \longrightarrow \mathrm{SeCl}_{2}+\mathrm{SnCl}_{4} \\
2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} & \longrightarrow \begin{array}{c}
\text { white silky ppt. } \\
\mathrm{HnCl}_{4} \mathrm{Cl}_{2} \downarrow+\mathrm{SnCl}_{4}
\end{array} \\
\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeCl}_{2}+7 \mathrm{H}_{2} \mathrm{SO}_{4} & \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{FeCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## 6. Burette Readings:

Burette reading in $\mathrm{cm}^{3}$	Accurate reading in $\mathrm{cm}^{3}$	
	I	II
Final burette reading		
Initial burette reading	0.0	0.0
Difference		

## Calculations

1. Normality of $\mathrm{Fe}^{3+}$ solution $=\frac{0.05 \times \text { B.R. }}{25}$
2. Gram per litre $=$ Normality $\times$ equivalent mass of $\mathrm{Fe}^{3+}\left(=\frac{\text { Atomic mass }}{3}=\frac{\mathbf{5 5 . 8 5}}{3}=18.62\right)$
3.Amount of $\mathrm{Fe}^{3+}$ present in the diluted 250 cc solution (given sample ore or solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ )

$$
=\frac{\text { normality } \times \text { equivalent mass }(55.85)}{4}=\cdots(x) g
$$

4. Percentage of $\mathrm{Fe}^{3+}=\frac{\mathrm{x} \times 100}{\text { mass of ore }}=\frac{\mathrm{x} \times 100}{1}=. . \%$

## Result:

1.Amount of $\mathrm{Fe}^{3+}$ present in the diluted 250 cc solution(given sample ore or solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) $=\ldots$. g
3. Percentage of $\mathrm{Fe}^{3+}=\ldots \ldots . \%$

## 2. Determination of percentage of copper in brass.

Aim: To extract Cu and Zn from brass and to determine the percentage of copper in the solution using standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.
Chemicals required: brass, Conc. $\mathrm{HNO}_{3}$, urea, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{KI}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, acetic acid etc.
Principle: The main constituents of Brass alloy are Copper \& Zinc with small quantity of tin, lead \& iron. The percentage composition of a typical brass is $\mathrm{Cu}-50-90, \mathrm{Zn}-20-40, \mathrm{Sn}-0-6, \mathrm{~Pb}-0-2, \mathrm{Fe}-0-1$. Sample of brass is dissolved in $\mathrm{HNO}_{3}$ to get the solution of Cu and $\mathrm{Zn} . \mathrm{Cu}$ is estimated by iodometric titration method in which iodine is liberated when KI solution is added to $\mathrm{Cu}^{2+}$ solution that is titrated against sodium thiosulphate solution using starch solution as an indicator.

## Procedure:

1. Weigh about 1 g of the brass into a watch glass and transfer it to a 250 cc beaker. Add 1-2 cc of con. $\mathrm{HNO}_{3}$.
2. Slowly heat the beaker covered with a watch glass.
3. When the vigorous reaction is over, add about 1 g of urea. When a pasty mass is obtained add about 50 cc of distilled water and boil for 2 minutes to destroy the oxides of nitrogen and dissolve all the soluble material.
4. Stir it well and filter if necessary through the filter paper. Collect the filtrate and washings in 250 cc beaker.
5. Transfer the brass solution, into a $\mathbf{1 0 0} \mathbf{c c} / \mathbf{2 5 0 c c}$ volumetric flask.
6. Weigh 1.240/3.102g of Sodium thiosulphate (mol.wt. $=$ Eq.wt. $=248$ ) crystals and transfer to beaker with the help of little distilled water and dissolve them completely.
7. Transfer the solution obtained to the $\mathbf{1 0 0 / 2 5 0}$ cc volumetric flask, using a funnel. Wash the beaker 2-3 times and collect washings in the same volumetric flask.
8. Make the solution up to the mark with distilled water. Shake it well for uniform concentration, and fill it into the burette.
9. Dilute the brass solution (containing $\mathrm{Cu}^{2+}$ ) in 100cc /250cc volumetric flask up to the mark with distilled water. Shake it well and pipette out 25 cc in to a clean 250 cc conical flask.
10. Add $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution drop wise to the solution till a slight ppt. is obtained. Add $\mathbf{1 : 1}$ acetic acid until the precipitate just dissolves and add two more drops.
11. Add one test tube full $10 \%$ KI solution, cover the conical flask with a watch glass and allow the mixture to stand for one minute.
12. Titrate slowly with standard sodium thiosulphate solution till colour of the solution changes from reddish brown to pale yellow and then add 1 cc of starch solution. The solution turns blue. Continue
the addition drop wise till the dark blue colour just disappears. There is a tendency for the blue colour to return, so that the first complete disappearance of the blue colour for about 10 seconds is taken as the end point.
13. Record the burette readings and repeat the titration till three concurrent readings are obtained.
14. Calculate the amount of copper in the brass solution (sample) using the accurate readings.

Observations I. weighing of sample of brass

1. Weight of empty watch glass $=W_{1}=---g$
2. Weight of watch glass + brass $=\mathrm{W}_{2}=---\mathrm{g}$
3. Weight of brass $=\mathrm{W}_{2}-\mathrm{W}_{1}=\ldots . \mathrm{g}$

## II. Preparation of standard $0.05 \mathrm{~N} \mathrm{Na} \mathbf{N a}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ solution

Molecular weight $=$ Equivalent weight $=248$
Amount of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ crystals to be weighed to prepare $100 / 250 \mathrm{cc}$ of 0.05 N solution
For $100 \mathrm{cc} \quad \mathbf{w}=\frac{\mathbf{N} \times \mathbf{E} \times \mathrm{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{2 4 8} \times \mathbf{1 0 0}}{\mathbf{1 0 0 0}}=\mathbf{1 . 2 4 0} \mathbf{g}$
For $250 \mathrm{cc} \quad \mathbf{w}=\frac{\mathbf{N} \times \mathbf{E} \times \mathbf{V}}{\mathbf{1 0 0 0}}=\frac{\mathbf{0 . 0 5} \times \mathbf{2 4 8} \times \mathbf{2 5 0}}{\mathbf{1 0 0 0}}=\mathbf{3 . 1 0 2} \mathbf{g}$

## III. Weighing of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ crystals

1. Weight of the empty watch glass $=\mathrm{W}_{1}=----\mathrm{g}$
2. Weight of the watch glass $+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ crystals $=\mathrm{W}_{3}=----\mathrm{g}$
3. Weight of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ crystals $=\mathrm{W}_{3}-\mathrm{W}_{1}=----\mathrm{g}$

## IV. Titration

1. Solution in burette: $0.05 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ solution
2. Solution in conical flask: 25 cc of $\mathrm{Cu}^{2+}$ solution +1 test tube of $10 \% \mathrm{KI}$
3. Indicator: Starch solution
4. End point: Blue to colourless near the end point.
5. Reactions

$$
\begin{aligned}
\mathrm{Cu}^{2+}+2 \mathrm{KI} & \longrightarrow 2 \mathrm{~K}^{+}+\mathrm{CuI}_{2} \text { (unstable) } \\
2 \mathrm{CuI}_{2} & \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2} \text { (liberated iodine) } \\
\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\underset{\text { Sodium tetra thionate }}{2 \mathrm{NaI}} \text { Sodium iodide }
\end{aligned}
$$

6. Burette Readings:

Burette reading in $\mathrm{cm}^{3}$	Accurate reading in $\mathrm{cm}^{3}$	
	I	II
Final burette reading		
Initial burette reading	0.0	0.0
Difference		

## IV. Calculations

1. Normality of $\mathrm{Cu}^{2+}$ solution $=\frac{\text { Normality of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times \text { B.R. }}{25}$
2.Gram per liter of $\mathrm{Cu}^{2+}=$ Normality of $\mathbf{C u}^{2+} \times$ Eq.mass of $\mathrm{Cu}^{2+}(63.5)=\mathrm{x} . \mathrm{g}$
2. Amount of $\mathrm{Cu}^{2+}$ present in the diluted 250 cc solution (given sample of alloy or solution) $=\frac{x}{4}=\ldots$

$$
g=' y^{\prime} g \quad \text { OR }
$$

Amount of $\mathrm{Cu}^{2+}$ present in the diluted 100 cc solution (given sample of alloy or solution) $=\frac{\mathbf{x}}{\mathbf{1 0}}=\ldots \mathbf{g}$

$$
=' y^{\prime} g
$$

4. Percentage of $\mathrm{Cu}^{2+}==\frac{\mathbf{y} \times \mathbf{1 0 0}}{\text { mass of alloy }}=\%$

## Results:

1. Normality of $\mathrm{Cu}^{2+}$ solution $=$ $\qquad$ g
2. Amount of $\mathrm{Cu}^{2+}$ present in the diluted 250 cc brass solution (given sample of alloy or solution) __g
3. Percentage of $\mathrm{Cu}^{2+}=\ldots \ldots . . \mathrm{g} \quad \%$

## 3. Determination of percentage of calcium in limestone

Aim: To extract calcium from limestone and to determine the percentage of calcium in the solution by oxalate method.
Apparatus: Burette, Pipette, Conical flask, volumetric flask, funnel, beaker etc.
Chemicals : $\mathrm{CaCO}_{3}, 5 \%$ ammonium oxalate, $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{KMnO}_{4}$, Oxalic acidetc.
Outline : Limestone when treated with $1: 1 \mathrm{HCl}$ to forms $\mathrm{CaCl}_{2}$ solution which on treating with ammonium oxalate solution it gives white ppt. of calcium oxalate. $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is dissolvedin dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ \& then titrated against standard $\mathrm{KMnO}_{4}$ solution.

## Procedure:

1. Weigh about $0.100 / 0.500 \mathrm{~g}$ of the limestone in a watch glass and transfer it to a 250 cc beaker. Add 10 cc of $1: 1 \mathrm{HCl}$ to it and slowly boil till the evolution of effervescence of $\mathrm{CO}_{2}$ ceases. When all the limestone is dissolved, add little distilled water.
2. Transfer the solution obtained into a $\mathbf{1 0 0 / 2 5 0}$ cc volumetric flask and dilute up to the mark with distilled water.
3. Shake well and pipette out 25 cc diluted solution in to a 250 cc beaker. Dilute to about 100 cc (by adding about 75 cc dist.water).
4. Add few drops of methyl red indicator and boil the solution. Add 25 cc of hot $5 \%$ ammonium oxalate solution and dilute $\mathrm{NH}_{4} \mathrm{OH}$ solution until the solution is neutral or slightly alkaline (colour changes from red to yellow).
5. Calcium is precipitated as calcium oxalate. Test for complete precipitation by adding slight excess amount of oxalate solution.
6. Allow the precipitate to settle for about 1 hr and filter it through filter paper No. 1 and wash with hot water. Reject the filtrate.
7. In the mean while standardize given $\mathrm{KMnO}_{4}$ solution as follows: Prepare $\mathbf{0 . 0 5} \mathrm{N}$ oxalic acid solution by dissolving 0.315 g oxalic acid crystals in water \& diluting up to the mark in $\mathbf{1 0 0} \mathbf{~ c c ~ v o l u m e t r i c ~}$ flask.
8. Pipette out 25 cc of oxalic acid solution into a clean 250 cc conical flask. Add $20 \mathrm{cc}\left(1 \frac{1}{2} \mathrm{TT}\right)$ of 2 N $\mathrm{H}_{2} \mathrm{SO}_{4}$ \& heat the solution $\left(60-70^{\circ} \mathrm{C}\right)$ just short of boiling. Titrate the hot solution against standard $\mathrm{KMnO}_{4}$ till colour changes from colourless to light pink. Note down the burette reading \& by using it calculate the exact normality of $\mathrm{KMnO}_{4}$ solution.
9. Dissolve the precipitate $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 5 cc of $1: 8 \mathrm{H}_{2} \mathrm{SO}_{4}$ (alternatively the solution may be collected by piercing a hole in the filter paper with a glass rod \& washings of the ppt. \& even
transfer the filter paper through a funnel in to a conical flask) and collect the solution in a conical flask.
10. Add 50 cc dilute $(2 \mathrm{~N}) \mathrm{H}_{2} \mathrm{SO}_{4}$ and heat to boiling. Titrate the hot solution against standard $\mathrm{KMnO}_{4}$ till colour changes from colorless to light pink.
11. Note down the burette reading. Using this calculate the percentage of calcium in the given sample of limestone.

Observations I. Weighing of limestone

1. Weight of empty watch glass $=\mathrm{W}_{1}=---\mathrm{g}$
2. Weight of watch glass + limestone $=\mathrm{W}_{2}=---\mathrm{g}$
3. Weight of limestone $=W_{2}-W_{1}=$ $\qquad$

## II. Preparation of standard $0.05 \mathrm{~N} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ solution

Molecular weight of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=126$ Equivalent weight $=63$
Amount of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals to be weighed to prepare 100 of $\mathbf{0 . 0 5 N}$ solution

$$
w=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{0.05 \times 63 \times 100}{1000}=0.315 \mathrm{~g}
$$

## III. Weighing of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ crystals

1. Weight of empty watch glass $=\mathrm{W}_{1}=---\mathrm{g}$
2. Weight of watch glass + Oxalic acid crystals $=\mathrm{W}_{3}=---\mathrm{g}$
3. Weight of Oxalic acid crystals $=\mathrm{W}_{3}-\mathrm{W}_{1}=0.315 \mathrm{~g}$

## IV. Part B: Standardization of $\mathrm{KMnO}_{4}$ solution

1. Solution taken in burette $=\quad$ 'a'N KMnO4 solution
2. Solution taken in conical flask $=25 \mathrm{cc}$ of 0.05 N oxalic acid solution+20 cc $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
3. Indicator $-\mathrm{KMnO}_{4}$ itself
4. Colour change- Colourless to light pink.
5. Reactions

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5(\varnothing) \\
& {\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+(\varnothing) \longrightarrow \mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}\right] \times 5 } \\
& 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{KO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2} \uparrow
\end{aligned}
$$

## Burette Readings:

Burette reading in   $\mathrm{cm}^{3}$	Accurate reading in $\mathrm{cm}^{3}$	
	I	II
Final burette reading		
Initial burette reading	0.0	0.0
Difference		

Exact Normality of $\mathrm{KMnO}_{4}=' a '=\frac{0.05 \times 25}{\text { B.R }}$
V. Part B Determination of Ca

1. Solution taken in burette $=a(.) .\mathrm{N} \mathrm{KMnO}_{4}$ solution
2. Solution taken in conical flask $=25 \mathrm{cc} \mathrm{Ca}^{2+}$ solution $+50 \mathrm{cc} 2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
3. Indicator $-\mathrm{KMnO}_{4}$ itself
4. Colour change- Colourless to light pink.
5. Reactions

$$
\begin{aligned}
& {\left[\mathrm{CaC}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] \times 5} \\
& 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5(\varnothing) \\
& {\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+(\phi) \longrightarrow \mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}\right] \times 5} \\
& 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2} \uparrow
\end{aligned}
$$

## Burette Readings:

Burette reading in $\mathrm{cm}^{3}$	Accurate reading in $\mathrm{cm}^{3}$	
	I	II
Final burette reading		
Initial burette reading	0.0	0.0
Difference		

## VIII. Calculations

1. 25 cc of $\mathrm{Ca}^{2+}$ solution required -------cc of $a(.) .\mathrm{N} \mathrm{KMnO}_{4}$ solution
2. Normality of $\mathrm{Ca}^{2+}=\frac{\text { Normality of } \mathrm{KMnO}_{4}(\mathbf{a N}) \times \mathbf{B . R} .}{25}={ }^{\prime} \mathbf{x}^{\prime} \mathbf{N}$
3. Gram per litreof $\mathrm{Ca}^{2+}={ }^{\prime} \mathbf{x}$ ' $\times$ equivalent mass of $\mathrm{Ca}^{2+}(20.04)=$.. (y) g
4. Amount of $\mathrm{Ca}^{2+}$ present in the diluted $100 / 250 \mathrm{cc}$ solution (given sample of limestone)

For 100c

$$
=\frac{\mathbf{x} \times \text { equivalent mass }(20.04)}{10} \text { or } \frac{\mathbf{y}}{10}=.(\mathbf{z}) .=. . \mathrm{g}
$$

For 250cc

$$
=\frac{\mathrm{x} \times \text { equivalent mass(20.04)}}{4} \text { or } \frac{\mathbf{y}}{4}=.(\mathrm{z}) .=. . \mathrm{g}
$$

5. Percentage of $\mathrm{Ca}^{2+}$ present in given sample of limestone

$$
=\frac{\mathbf{x} \times 100}{\text { mass of limestone }}=\ldots . \%
$$

## Results:

1. 25 cc of $\mathrm{Ca}^{2+}$ solution required $1----\mathrm{cc} 2 .----\mathrm{cc}\left(\right.$ B.R.) of $a(..) \mathrm{NKMnO}_{4}$ solution
2. Amount of $\mathrm{Ca}^{2+}$ present in the diluted 100 cc solution (given sample of limestone) $=---\mathrm{g}$
3. Amount of $\mathrm{Ca}^{2+}$ present in the diluted 250 cc solution (given sample of limestone) $=---\mathrm{g}$
4. Percentage of $\mathrm{Ca}^{2+}$ present in given sample of limestone $=\ldots \ldots . \%$

## Preparation of Complexes

## 1. Preparation of bis(dimethylglyoximato)nickel(II)

Aim: To prepare bis(dimethylglyoximato)nickel(II)
Chemicals required: $\mathrm{NiSO}_{4}$, Dilute ammonia, $1 \%$ alcoholic solution of DMG.

## Procedure:

1. Dissolve the given sample (say 0.200 g ) of nickel salt in 50 cc of distilled water taken in a clean 100 cc beaker.
2. Add 2 cc of dilute $(1: 1) \mathrm{HCl}$ and heat the solution to $70-80^{\circ} \mathrm{C}$.
3. Add a slight excess of $1 \%$ alcoholic solution of dimethyl glyoxime ( $10-12 \mathrm{cc}$ ), immediately followed by dilute ammonia solution drop wise until the solution is slightly ammoniacal, stir well and allow to stand on the steam bath for 30 minutes.
4. Test the solution for complete precipitation when scarlet red has settled down. Allow the precipitate to stand for one hour while cooling at the same time.
5. Filter the cold solution through previously weighed Gooch (sintered glass) crucible dry it to $110-120^{\circ}$ C for 40-45 minutes.
6. Allow to cool in a desiccator and weigh. Note down the yield.

Observations

1. Yield $-\ldots .$. g
2.Colour - Scarlet red
2. Structure


## 2.Preparation of trans-potassiumdiaquabis(oxalato)chromate(III)

Aim: To prepare trans potassiumdiaquobis(oxalato)chromate (III)
Chemicals required: Oxalic acid \& Potassium dichromate

## Procedure:

1. Dissolve oxalic acid dihydrate ( 6 g ) in the minimum amount of boiling water( $10-15 \mathrm{ml}$ ) in 250 cc beaker.
2. Add in small portion a solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(2 \mathrm{~g})$ dissolved in the minimum quantity of hot water.
3. Cover the beaker while the violent reaction proceeds.
4. Evaporate the solution to about one half of its original bulk and then allow spontaneous evaporation at room temperature to proceed until the solution is reduced about one third of its original bulk.
5. Filter off the crystals. Wash with cold water and alcohol. Record the yield.

## Observations

1. Yield $=$ $\qquad$
2. Colour - Violet
3. Reaction
$7 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow 2 \mathrm{~K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2} \uparrow+7 \mathrm{O}_{2} \uparrow+2 \mathrm{Cr}_{2} \mathrm{O}_{3}$

Structure


## 3. Preparation of tris(thiourea)copper(I)sulphate monohydrate.

Aim: To prepare tris(thiourea) copper (I) sulphate monohydrate
Chemicals required: Thiourea and coppersulphate

## Procedure:

1. Dissolve thiourea $(1.0 \mathrm{~g})$ in $7-8 \mathrm{ml}\left(\right.$ appro. $\left.3 / 4^{\text {th }} \mathrm{TT}\right)$ of distilled water in a test-tube $\&$ warm to prepare a solution.
2. Prepare a solution of copper sulphate by dissolving 1.0 g in $7-8\left(\mathrm{appr} .3 / 4^{\text {th }} \mathrm{TT}\right) \mathrm{ml}$ of distilled water in a small beaker. Cool both the solutions.
3. Add copper sulphate solution slowly to the thiourea solution drop wise with constant stirring.(Add a few ml of cold $10 \%$ thiourea solution if the color of copper sulphate solution is not discharged completely).
4. Stir the mixture vigorously. Allow to stand for about 20-30 minutes.
5. Filter the white precipitate. Wash the precipitate with water \& with alcohol and dry it.
6. Weigh the product \& record the yield.

## Observations

1. Yield $=\ldots$. $g$
2. Colour - colourless
3. Reaction
$2 \mathrm{CuSO}_{4}+6 \mathrm{~S}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \longrightarrow\left[\mathrm{Cu}\left\{\left(\mathrm{NH}_{2}\right) \mathrm{CS}\left(\mathrm{NH}_{2}\right)\right\}_{3}\right]_{2} \mathrm{SO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$


## 4. Preparation of sodiumtris(oxalato)ferrate(III).

Aim: To prepare sodiumtris(oxalato)ferrate(III).
Chemicals required: Ferric chloride, Oxalic acid \& NaOH etc.

## Procedure:

1. Dissolve Ferric chloride ( 1 g ) in 3-5 ml of distilled water in a 250 ml beaker to prepare a solution.
2. Prepare sodium hydroxide $(5 \mathrm{~g})$ solution in 10 ml of distilled water in a test-tube.
3. Add 5 ml of sodium hydroxide solution to ferric chloride solution in small quantities \& stir. The reddish brown ferric hydroxide(hydrated ferric oxide) is obtained. Filter it through a filter paper.
4. Prepare a solution of oxalic acid $(2.0 \mathrm{~g})$ in 5 ml of hot water.
5. Add 5 ml of NaOH to oxalic acid solution to obtain sodium oxalate solution.
6. Heat $10-15 \mathrm{ml}$ sodium oxalate solution and pour it on ferric hydroxide precipitate to dissolve it and transfer it to the same beaker by piercing a hole in the filter paper cone and then transfer completely and heat.
7. Filter the solution if necessary and concentrate green filtrate or solution in a beaker by heating slowly on sand bath and then in an evaporating dish to get green crystals.
8. Filter off the crystals. Wash with cold water and alcohol. Record the yield.

## Observations

1. Yield $=$ $\qquad$
2. Colour - Green
3. Reaction $\mathrm{FeCl}_{3}+3 \mathrm{NaOH} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} \downarrow+3 \mathrm{NaCl}$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow 2 \mathrm{Na}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}
$$



## IV : Ion Exchange Process:

Separation of $\mathbf{M g}$ (II) and $\mathbf{F e}$ (II) by ion exchange method using anion exchange resin.
Aim: To separate of Mg (II) and $\mathrm{Fe}(\mathrm{II})$ by ion exchange method using anion exchange resin and determine the same.

Chemical required: resin (amberlite), $2 \mathrm{NNaOH}, 2 \mathrm{~N} \mathrm{HCl}, \mathrm{HNO}_{3}$, EDTA, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Theory: The term ion exchange means the exchange of ions of like sign between a solution and insoluble solid phase. The solid material is known as ion exchanger, which must have an open permeate molecular structure so that ions and solvent molecules can move freely in and out. Usually the ion exchangers are highly cross-linked organo polymers, which are insoluble in water and in organic solvents and having active ions those exchangers reversibly with other ions in a surrounding solution without any appreciable physical change occurring in the material. Depending upon the nature of the active ions present on the ion exchanger they have been classified in to cation exchanger and anion exchanger. Cation exchanger resin is a highly cross-linked sign molecular weight polymer containing sulphonic, carboxyl, phenolic etc. groups as an integral part of the resin and an equivalent amount of active cations.

Anion exchange resin is a polymeric cation and contains active anions such as chloride, hydroxyl, sulphate etc

## Procedure:

Conditioning the resin: The anion exchange resin is taken in a beaker. Wash thoroughly with 2 N HCl then by distilled water and finally by 2 N NaOH and again by glass distilled water. This process is repeated several times.
Column preparation: The above conditioned resin is taken in a clean burette fill up to 12-14 inches. Initially the column is thoroughly washed with glass-distilled water by passing the water through the column. This is then followed by passing about $80-100 \mathrm{cc}$ of 2 N HCl through the column. The rate of elution of drops is adjusted to about 60-70 drops/min.

## Separation of $\mathbf{M g}($ II $)$ and $\mathrm{Fe}(\mathrm{II})$ :

1. Dilute the given solution of Mg (II) \& Fe (II) up to the mark with 2 N HCl solution.
2. Pipette out 10 cc of the solution and add to the column. Collect the eluted Mg (II) ions in a 500 cc conical flask. Elute the column with 100 cc 2 N HCl . Collect the elute in the same flask. The solution in flask containing Mg (II) ions but Fe (II) forms $\mathrm{FeCl}_{4}{ }^{2-}$ which undergoes exchange phenomenon with anion exchange of the resin so that it remains in the resin bed.
3. Add 50 cc of glass distilled water to the ion exchange column and collect the eluent in another 500 cc conical flask. Then elute by 100 cc of $0.025 \mathrm{~N} \mathrm{HNO}_{3}$.
4. The eluent is collected in the second conical flask, which is containing Fe (II) ions. It should be noted that the resin bed should not be allowed to dry during the experiment.

## Method of determination:

i. Take the Mg (II) solution present in first conical flask. As it is strongly acidic in nature, it is neutralized with 2 N NaOH . Add 2 N NaOH drop by drop to $\mathrm{Mg}(\mathrm{II})$ solution till to get a slight precipitate.
ii. Add 2-3 cc of buffer solution $(\mathrm{pH}=10)$ and 4-5 drops of eriochrome black -T indicator to Mg (II) solution. Titrate it against standard 0.1 M EDTA solution till the colour changes from wine red to blue.
iii. Titrate another solution containing Fe (II) solution against standard solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in presence of sulphuric acid using diphenylamine indicator and phosphoric acid.
iv. With the help of burette readings, calculate the amount of Mg (II) and Fe (II) ions in the solution.

## Reference Books:

1. A Text Book of Quantitative Inorganic Analysis (3 ${ }^{\text {rd }}$ edition) - A.I. Vogel
2. A hand book of Analytical Chemistry - Subhash \& Satish \& Lal
3. Elementary Practical Chemistry -G.D.Sharma and Arun Bahl
4. Practical Inorganic Chemistry -Preparation, Reaction and Instrumental methods - Geofrey\& Haydn Sutcliff (For preparations of complexes)

## SEPARATION AND QULITATIVE ANALYSIS OF LIQUID-LIQUID ORGANIC BINARY MIXTURES

Total No of hours/week : 4Hrs
Total No. of Hours : 54 Hrs

Total No of hours/week : 4Hrs
Total No. of Hours : 54 Hrs

## CONTENTS

Separation of organic liquid binary mixture by distillation.
Characterization of any one separated compound through preliminary tests, element test, physical constant, functional group test and preparation of suitable derivative and its physical constant.

Low Boiling Liquids : Ethyl acetate, Acetone, Toluene, Chlorobenzene.
High Boiling Liquids: Phenol, Aniline, Nitrobenzene, Benzaldehyde, Acetophenone, Bromobenzene.

Instructions:
In a batch of ten students, in the practical examination, five students may be given experiment number 1-6 (binary mixture) and remaining five students may be given physical experiments. In a batch of five students in the practical examination, not more than two students should get the same experiment.

SCHEME FOR PRACTICAL EXAMINATION

DISTRIBUTION OF MARKS			
Separation	03		
Preliminary tests	02		
Nature	02		
Element test	04		
Physical constant	03		
Functional Group test	04		
Identification and Structure	03		
Preparation of derivative	03		
Physical constant of derivative	03		
Systematic Presentation	03		
Journal	05		
Viva voce	05		
TOTAL			40

NOTE: In a batch of ten students, not more than two students should get the same mixture in the practical examination. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. During practical examination chart may be referred whenever necessary.

## SEPARATION OF ORGANIC LIQUID BINARY MIXTURE BY DISTILLATION

## Principles of separation:

Liquid-Liquid binary mixture: If mixture is a given is homogeneous, it is possible that both components are liquids or one liquid and other solid that has dissolved in the liquid on mixing.

When both components are liquid, the mixture is separated by fractional distillation. The distillation should be carried out slowly and carefully.
Scheme for actual separation of organic liquid- liquid mixture:

## DISTILLATION OF A LIQUID MIXTURE

Place $15-20 \mathrm{cc}$ of an unknown liquid mixture (say $10 c c P+10 c c Q$ ) that is to be purified by simple distillation and for which the boiling point range is to be determined.
Step 1: Assemble the distillation apparatus (simple or fractional). Transfer the unknown liquid to a 50 cc round bottom flask (this will be the distilling pot). Add one boiling chip, and proceed to distill the liquid into a 10 cc graduated cylinder (this will be the receiver). Check the position of the thermometer (the bulb of the thermometer must be below the arm of the distillation head) and make sure that the bottom of the distillation pot touching the heating surface of the heating set. Now fix the condenser along with rubber tubes for water circulation. As shown in figure.


Step-2: Slowly turn on the water for condenser, and begin heating. Adjust the heating set to maintain a distillation rate of one drop per second. As the lower boiling component is distilled, the boiling point of
the mixture in the distillation flask will increase. Record the temperature after the first drop is collected and again after every 2 ml of distillate is collected. Collect at least 10 ml of distillate in a separate test tube labelled as Low boiling fraction (component P). PRESERVE IT.

Step 3: Collect the next 10 ml of distillate, again recording the temperature after every 1 ml of distillate. Collection of last portion of distillate should continue until the temperature remains constant. If the distillation flask is approaching dryness, remove the heat source immediately and after cooling, transfer the distillate and any remaining liquid from the flask to the third test tube (component Q). KEEP IT.

Determine the boiling point range of the first fraction of the collected liquid and the third portion of the collected liquid. Identify the unknowns by their boiling points using the possible boiling points of compounds by referring the literature.


## Qualitative analysis of Organic Compounds

After separation (distillation) of the organic compound from the binary mixture, the individual compound is systematically analyzed. The process of analysis / identification of an organic compound is called "organic spotting". The purpose of organic qualitative analysis is to spot a given organic substance and to substantiate its nature by performing a set of reaction/s with it. The frame work for qualitative analysis of the given organic compound will proceeds follows.

## I) PRELIMINARY TESTS

S.N	Test	Observation	Inference
1.	State	Liquid	Low boiling liquids; Acetone, Ethyl acetate may be present. High boiling liquids; Aniline, Phenol,Acetophenone, Nitrobenzene,Toluene, Benzaldehyde, bromobenzene, Chlorobenzene may be present.
2.	Colour	Colourless   Yellow   Reddish/Brown	Benzaldehyde, Acetone, Acetophenone, Ethyl acetate, Toluene, Chlorobenzene may be present. Nitrobenzene, bromobenzene may be present.   Phenol,Aniline may be present
3.	Odour	Phenolic   Fishy   Pleasant/Fruity   Bitter almond	Phenol   Amines (Aniline) may be present. Acetone, Acetophenone, Ethyl acetate, Bromobenzene, Chlorobenzene   Benzaldehyde, Nitrobenzene
4.	Beilstein's Test :   Heat a loop of copper wire till it does not impart green colour to the flame. Cool, and dip in the liquid and then heat it.	Burns with nonsooty flame Burns with sooty flame Burns with sooty flame followed by green edged flame	Aliphatic compound   Aromatic compound   Halogenated aromatic compound
Therefore, the given compound is -------------			
5.	Solubility Test		
i	Liq. + Water	Miscible in cold acidic to litmus	olution ${ }^{\text {Acetic acid may be present }}$


		Miscible in cold and neutral to litmus   Immiscible	Acetone and ethylacetate may be present   Phenol, aniline, toluene, chlorobenzene, benzaldehyde etc; may be present.
ii	Liq. + $\mathrm{NaHCO}_{3}$ Solution	Miscible with effervescence	Acids present
	Above Sol. + dil HCl	Reappearance of oily drops or turbidity	Acid confirmed
iii	Liq. +NaOH	Miscible	Phenol present
	Above Sol. + dil HCl	Reappearance of oily drops or turbidity	Phenol confirmed
iv	Liq. $+1: 1 \mathrm{HCl}$	Miscible	Base present
	Above Sol. + NaOH	Reappearance of oily drops or turbidity	Base confirmed
(if all the above tests are negative the nature of the given compound is NEUTRAL)   Note: A.S. $=$ Above solution   Conclusion: The given compound is $\qquad$ (Acid/Phenol/Base/Neutral)			
6.	Test for Un-saturation.		
i	$\mathrm{Br}_{2}$ water test:   2-3 drops of liquid + few drops of $\mathrm{Br}_{2}$ water. If it doesn't give test treat with Bromine in carbon tetra chloride	Decolourisation of $\mathrm{Br}_{2}$ water   No decolourisation	Unsaturated compound   Saturated compound
ii	Alkaline $\mathrm{KMnO}_{4}$ test :   Dissolve the compound in hot water + few drops of very dilute alkaline $\mathrm{KMnO}_{4}$ solution	Decolourisation of $\mathrm{KMnO}_{4}$ solution   No decolourisation	Unsaturated compound present   Saturated compound

Conclusion: The given compound is $\qquad$ (Saturated/Unsaturated)

## II. Determination of physical constant:

Using Thiel's tube the boiling point of given compound under investigation is determined.
Boiling point of the compound is $\ldots \ldots \ldots . .{ }^{0} \mathrm{C}$

## III. Detection of Elements:

Generally organic compounds contain Nitrogen (N), Halogen (X) and Sulphur (S) along with Carbon, Hydrogen and (Oxygen). For the detection of N, X, and S the Lassaigne's test is performed.

## Lassaigne's Test :

Take a small piece of clean and dry Sodium metal in a fusion tube and heat it slowly till the metal fuses. Cool and add 2-3 drops of liquid under investigation. Heat continuously till the fusion tube becomes red hot. Plunge the red hot fusion tube into about 10 ml of distilled water taken in an evaporating dish. Break the fusion tube with a glass rod and boil the mixture for about 5 min and filter. The filtrate is called Sodium Extract (S.E) and use it for the test for Nitrogen, Halogen/s and Sulphur.

Test for Nitrogen : $1 \mathrm{~cm}^{3}$ of S.E. $+1 \mathrm{~cm}^{3}$ of freshly prepared $\mathrm{FeSO}_{4}+1$ drop of NaOH soln. Boil and cool. Add a few drops of $\mathrm{FeCl}_{3}$ and acidify with Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or Conc. HCl .	Green or blue colouration. (Prussian blue colour)	Nitrogen present
Test for halogens :   $1 \mathrm{~cm}^{3}$ of S.E. + dil $\mathrm{HNO}_{3}$ boil	a) Curdy white ppt. easily soluble in $\mathrm{NH}_{4} \mathrm{OH}$	Chlorine is present
	b) Pale yellow ppt. sparingly soluble in $\mathrm{NH}_{4} \mathrm{OH}$	Bromine is present
	c) Yellow ppt insoluble in $\mathrm{NH}_{4} \mathrm{OH}$	Iodine is present
Test for Sulphur :   S.E. ( 2 ml ) + 2-3 drops of sodium nitroprusside solution.	Violet colouration	Sulphur present

Conclusion: The elements present in the compound are C, $\mathrm{H},(\mathrm{O})$ and $\qquad$

## IV. Detection of Functional Group

It can be done on the basis of elements present in the compound, its nature and they are divided into following divisions.
Division I - C, H, \& (O) Division II - C, H, (O) \& N
Division III - C, H, (O) and Halogen
The given compound contains the elements C,H (O) \& ... The compound belongs to the division
$\qquad$
V) DETECTION OF FUNCTIONAL GROUPS

Division I - C, H, \& (O)
[Phenols, Neutral (Aldehydes, Ketones, Esters \& Aromatic Hydrocarbons)].
B) Test for Phenols

i) $\mathrm{Br}_{2}$ Water Test :		
Dissolve the given Compound		
in water or in acetic acid +	White ppt	Phenol is present
Bromine water and observe		
ii) Alcoholic $\mathrm{FeCl}_{3}$ Test :		Phenol is present
Dissolve the given Compound	Violet Colouration	
in water or in acetic acid +		
alcoholic $\mathrm{FeCl}_{3}$ solution and		
observe.		


Confirmatory tests for Phenols)		
i)PhthaleinFusionTest:   Compound (1-2 drops) +a pinch of phthalic anhydride +2 drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat gently, cool, pour it in a beaker containing water and NaOH (5 drops)	Red (Pink) Colour	Phenol is present and confirmed
ii) Leiberman's Nitroso Test   Compound (2-3 drops) + $\mathrm{NaNO}_{2}$, heat gently, cool + Con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (5 drops)	A deep green to blue solution is formed at first which turns red when poured in to water containing few drops of NaOH	Phenol is present \& confirmed.
C) Test for neutral compounds containing C,H\& (O) (Aldehydes, Ketones \& Esters)		
Brady's reagent Test: Compound $+2,4$ :DNP	Yellow crystalline ppt.	Benzaldehyde or (Ketones) Acetone or Acetophenone present.
Schiff's reagent test:    Compound	Pink colouration	Benzaldehyde is present.
the mixture well. Keep for a while.	No Pink colouration	Acetophenone is present.
C.T. for Benzaldehyde:		
Silver mirror test (*Tollen's reagent test) :   Compound(1 drop) +Tollen's reagent. Warm the mixture on a water bath without disturbing.	Silver mirror or grey ppt.	Benzaldehyde is present \& confirmed
*Preparation of Tollen's reagent : Mix equal volume of $10 \%$ aqueous $\mathrm{AgNO}_{3}(1 \mathrm{ml}) \&$ dil $\mathrm{NaOH}(1 \mathrm{ml})$ Add dilute $\mathrm{NH}_{4} \mathrm{OH}$ drop wise till the brown ppt. just dissolves to get a clear solution.		
Ketones - Acetone \& Acetophenone		
Aliphatic compound-Acetone, Aromatic compound-Acetophenone		
$\begin{aligned} & \text { Compound (1-2 drops) + } \\ & \text { Sodium Nitroprusside } \\ & \text { solution(5 drops) + few drops of } \\ & \text { NaOH. } \end{aligned}$	Red colouration   Red coluration changes to blue on adding acetic acid	Acetone is present   Acetophenone is present
C.T. for Acetophenone		
Brady's reagent Test: Compound + 2,4:DNP	Yellow ppt.	Acetophenone is present and confirmed.


C.T. for Acetone		
ii) Iodoform test:   Compound(3-4 drops) $+\mathrm{I}_{2}$ in KI solution till yellow colour persists +NaOH , heat the solution gently.	Yellow ppt.	Acetone is present and confirmed.
Esters - Ethyl Acetate		
Compound (5drops) + 1-2 drops of phenolphthalein and one drop of very dil. NaOH (Diluted 10 times), heat	Pink colour is formed, which disappears on heating due to the free acid formed by the hydrolysis of esters.	Ethyl acetate is present
C.T. Ethyl Acetate		
Feigl Test : 1-2 drop of compound + Hydroxylamine hydrochloride Solution(5 drops) +5 drops of KOH in methanol solution. Boil for a minute, cool \& acidify with dil $\mathrm{HCl} .+1-2$ drops of $\mathrm{FeCl}_{3}$	Violet colouration	Ethyl acetate is present and confirmed
Test for Neutral compounds containing C \& H only (Aromatic Hydrocarbons)		
Hydrocarbons(Toluene)		
Compound + Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	Insoluble	Toluene is present
C.T. for Toluene		
Compound + Picric acid in Benzene shake well.	Yellow ppt.*	Toluene is present \& confirmed
*Take it as picrate derivative with M.P. $=88^{\circ} \mathrm{C}$		
Division II - C, H, (O) \& N (Bases \& Neutral compounds)		
Base - Amines (Aniline)		
Compound + dil HCl	Dissolves completely and reprecipitated by NaOH	Base (Amine) is present
Compound $(2-3$ drops)+   $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (pinch)+    conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(3-4$ drops) shake   well.	Blue or Black colour	Anilne is present.


C T. for Aniline (Test for $-\mathrm{NH}_{2}$ group)		
Azo-dye test: Compound + con. $\mathrm{HCl}(1: 1)$ cool in ice $+10 \%$ ice cold $\mathrm{NaNO}_{2}$ solution + 2-naphthol in NaOH .	Orange Red dye	Aniline present and confirmed   ( $-\mathrm{NH}_{2}$ group is present)
Neutral -- Nitro Benzene		
Mulliken's Test (Neutral reduction test : Dissolve the Compound (4 drops) in a hot $50 \%$ aqueous alcohol $+5-6$ drops of $10 \% \mathrm{CaCl}_{2}+$ pinch of Zn dust Boil the mixture for a minute. Filter and test the filtrate with Tollen's reagent.	A black ppt.or grey ppt.	Nitro(- $\mathrm{NO}_{2}$ ) group ( Nitro benzene) is present.
C.T. for Nitro Benzene		
Compound(5 drops) + Glacial acetic $\operatorname{acid}(1 \mathrm{ml})+$ pinch of Zn dust, Boil cool, \& add water ( 1 ml ) +NaOH till alkaline + Sodium nitroprusside (2-3 drops)	Violet colouration	Nitro benzene is present and confirmed
DIVISION - III (C, H and Halogens( Br or Cl )   (Bromobenzene or Chlorobenzene)		
Test for Bromobenzene		
Beilstein's Test: (Test for aliphatic or aromatic) Heat a small piece of copper foil in a non-luminous flame using pair of tongs until it imparts no colour to the flame. Cool, dip into the given organic compound and again hold it to the flame and observe	Burns with Sooty(smokey) flame followed by green edged flame	Bromobenzene or Chlorobenzene present
Compound + Alcoholic $\mathrm{AgNO}_{3}$ \& mix \& warm	Pale yellow ppt.   A white curdy ppt.	Bromobenzene is present   Chlorobenzene is present
C.T. for Bromobenzene		
Compound ( 4 drops) +2 ml of fuming $\mathrm{HNO}_{3}$ (or 1 ml of con. $\mathrm{H}_{2} \mathrm{SO}_{4}+1 \mathrm{ml}$ of Con. $\mathrm{HNO}_{3}$ ) Heat for 5 minutes, cool and pour it into water.	Yellow solid	Bromobenzene is present and confirmed


C.T. for Chlorobenzene		
Compound (4 drops) +2 ml of fuming $\mathrm{HNO}_{3}$ (or 1 ml of con. $\mathrm{H}_{2} \mathrm{SO}_{4}+1 \mathrm{ml}$ of Con. $\mathrm{HNO}_{3}$ ) Heat for 5 minutes, cool and pour it into water containing ice pieces.	*Yellow solid	Chlorobenzene is present and confirmed
*Take it as derivative p-nitrochlorobenzene with M.P. $=83$ ${ }^{\circ} \mathrm{C}$		


S.N	Particulars	Inference
1.	Nature   (Acid/ base/phenol/Neutral)	
2.	Aliphatic / Aromatic	
3.	Saturated or Unsaturated	Observed B.P $=\ldots{ }^{0} \mathrm{C}$   Literature B.P $=\ldots{ }^{\circ} \mathrm{C}$
4.	Physical constant of compound	
5.	Elements present	
6.	Functional group	
7.	Molecular formula of the compound	
8.	Structural formula of the compound	
9.	Name of the compound	
10.	Name of the derivative	Observed MP $=\ldots{ }^{0} \mathrm{C}$   Literature MP $=\ldots{ }^{\circ} \mathrm{C}$
11.	Structure of the derivative	
12.	Physical constant of the derivative	

## PREPARATION OF DERIVATIVES

## 1. Bromo derivative for Phenol and Aniline

Dissolve about 1 ml of aniline or phenol in acetic acid and take this content in 100 c.c. conical flask. Add strong bromine solution (bromine in acetic acid) until, after shaking, the liquid is pale yellow. Add 50 c.c. water, cool and shake vigorously. Filter and wash the bromo-derivative with water. Recrystallise the product from alcohol.

For Phenol


For Aniline


## 2. Benzoic acid from Benzaldehyde

Take 1 ml of benzaldehyde in a 100 ml . conical flask and add about 10 ml . of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and boil the solution by placing boiling chips. To, the boiling solutions add about 15 ml of $\mathrm{KMnO}_{4}$ gradually till the solution contains a little excess of potassium permanganate. Filter of the precipitated hydrated $\mathrm{MnO}_{2}$ and few drops of $\mathrm{SO}_{2}$ water to remove excess of $\mathrm{KMnO}_{4}$. Filter and acidify the filterate, on cooling, the acid precipitates. Recrystallise from hot water.


## 3. 2,4-D.N.P - derivative for Acetone and acetophenone

Take about 5 ml of 2,4-DNP solution in a test tube. Add 5-6 drops of the given liquid (acetone or Acetophenone) shake well and warm it for few minutes. Cool and filter the precipitate thus formed. Recrystallise it from alcohol.


If $R=\mathrm{CH}_{3}$; Acetone and $R=\mathrm{C}_{6} \mathrm{H}_{5}$ Acetophenone

## 4. Iodoform derivative for Acetone and Acetophenone

To about 5-6 drops of the liquid add $10 \mathrm{ml}_{\mathrm{NH}}^{4} \mathrm{OH}$. Add iodine solution drop by drop till the solution is distinctly yellow. Warm gently on water bath. When iodoform a yellow crystalline solid, separates in short time. Filter, dry and take M.P.


## 5. Iodoform derivative for Ethyl acetate

Hydrolyse 1 ml of ethyl acetate with 50 ml of $10 \% \mathrm{NaOH}$ by gently boiling under reflux for 1 hour. A mixture of ethyl alcohol and sodium acetate are formed. Completion of hydrolysis is indicated by the formation of a homogeneous solution.

Take about 1 ml of above hydrolysed solution, add $10 \%$ of potassium iodide solution and 5 ml of freshly prepared sodium chlorite solution. Warm for few minutes and cool. Yellow crystals of iodoform are produced. Filter and collect it as derivative.

HYDROLYSIS OF ESTER

$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \longrightarrow$	$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
Ethyl acetate	Sodium acetate Ethanol

## IODOFORM REACTION



## 6. 2,4-Dinitrotoluene from toluene

To 5 ml of nitrating mixture ( $1: 1$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+$ Fuming Nitric acid), add 1 ml of toluene in small lots with shaking after each addition. Cool in ice -water, by maintaining temperature $10^{\circ} \mathrm{C}$. Heat for two minutes and pour into about 50 ml . of cold water. Filter, wash and crystallise from alcohol.


## 7. p-Nitrochlorobenzene from Chlorobenzene

$4-5$ drops of chlorobenzne +2 ml of fuming nitric acid. Heat for 5-10 minutes on water bath and pour into 10 ml . water. Separated solid is Filter and dry. Recrystallise from ethanol.


## 8. p-Nitrobromobenzene from Bromobenzene

$4-5$ drops of Bromobenzne +2 ml of Conc. $\mathrm{HNO}_{3}$ and Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ shake well, and Heat for 2 minutes on water bath and pour into 10 ml . water. Separated solid is Filter and dry. Recrystallise from ethanol.


## 9. m-Dinitrobenzene from Nitrobenzene

4-5 drops of nitrobenzene dissolved in 1 ml of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a dry test tube and add a mixture of 1 ml of Conc. $\mathrm{HNO}_{3}$ and 1 ml of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and add few drops of fuming nitric acid shake well. Heat for 2 minutes at $100^{\circ} \mathrm{C}$ and pour into finely crushed ice in a beaker. Cool thoroughly and scratch by means of a glass rod when the oily suspension solidifies. Filter and recrystallise from alcohol.


## References:

1. A Text book of Practical Organic Chemistry- By Arthur I .Vogel, IV ${ }^{\text {th }}$ Edn. ELBS, 1978 Longman Group Ltd.
2. Organic Experiments VII ${ }^{\text {th }}$ Edition Louis F. Fieser Late Professor Emeritus Harvard University Kenneth L Williamson Mount Holyoke College
D. C.HEATH AND COMPANY Lexington, Massachusetts Toronto
3. Systematic Lab experiments in Organic Chemistry- ArunSethi
4. Practical Organic Chemistry - Nadkarni and Kulkarni
5. Advanced Practical Organic Chemistry - N.K.Vishnoi
6. Practical Chemistry -.O.P.Pandey,D.N.Bajpai \& S.Giri
7. A hand book of Analytical Chemistry- Subhash \& Satish

Name, Structure and M.P. of derivatives of Organic Compounds

Substance	B.P. $\left({ }^{(0} \mathrm{C}\right)$	Mol. Formula	Str. Formula	Derivative (in M.P.)
1. Phenol	183-184	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$		2,4,6-Tribromo phenol (95-97 ${ }^{0} \mathrm{C}$ )
2.Benzaldehyde	179-180	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$		Benzoic acid $(\mathbf{1 2 0 - 1 2 2} \mathbf{0})$ Or 2,4-D.N.P derivative $\left(\mathbf{2 3 7 - 2 3 9}^{\mathbf{0}} \mathbf{C}\right)$
3. Acetone	56-58	$\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$		Iodoform $\left(\mathbf{1 1 9 - 1 2 1}{ }^{0} \mathbf{C}\right)$ or 2,4-D.N.P derivative $\left(\mathbf{1 2 6 - 1 2 8} \mathbf{1 2}^{\mathbf{C}}\right)$
4. Acetophenone	202-204	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{3}$		Benzoic acid $\left(120-122^{\circ} \mathrm{C}\right)$   or 2,4-D.N.P derivative $\left(249^{0} \mathrm{C}\right)$
5. Ethyl acetate	77-79	$\mathrm{CH}_{3}-\mathrm{COOC}_{2} \mathrm{H}_{5}$		$\begin{gathered} \text { Iodoform } \\ \left(\mathbf{1 1 9 - 1 2 0}{ }^{\circ} \mathbf{C}\right) \end{gathered}$
6. Toluene	110-112	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$		2,4-Dinitrotoluene $\left(70-72^{\circ} \mathrm{C}\right)$
7.Chlorobenzne	132-134	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}$		p-Nitrochlorobenzne $\left(83-84^{0} \mathrm{C}\right)$
8. Bromobenzne	155-157	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Br}$		p-Nitrobromobenzne $\left(126-127^{0} \mathrm{C}\right)$
9. Nitrobenzene	209	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$		$\begin{aligned} & \text { m-Dinitrobenzne } \\ & \quad\left(\mathbf{9 0 - 9 2}^{\mathbf{0}} \mathrm{C}\right) \end{aligned}$
10. Aniline	184	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}_{2}$		2,4,6-Tribromoaniline   $\left(119-121{ }^{0} \mathrm{C}\right)$

## B. Sc. VI Sem : Paper - II

## EXPERIMENTS IN PHYSICAL CHEMISTRY

Total No of Hours/Week : 04 Hours
Total No of Hours $: 26$ Hours IA :10 Marks

Expt.   No	Experiments	Page   No.
1	Determination of the concentrations of given acids in a mixture of $\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COOH}$   conductometrically using the standard $(0.5 \mathrm{~N}) \mathrm{NaOH}$	226
2	Determination of solubility of sparingly soluble Salt, $\mathrm{BaSO}_{4} / \mathrm{PbSO}_{4}$ conductometrically.	228
3	Determination of redox potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ using of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution $(\approx 0.1 \mathrm{~N})$   by potentiometric titration against the standard solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(0.1 \mathrm{~N})$.	230
4	Determination of the solubility and solubility product of sparingly soluble salts (AgCl)   potentiometrically.	232
5	Determination of the percentage composition of unknown mixture of A \& B liquids using   Abbe's refractometer by formula method.	234
6	Determination of the percentage composition of unknown mixture of A \& B liquids using   Abbe's refractometer by graphical method.	236
7	Determination of pK ${ }_{\mathrm{a}}$ of acetic acid potentiometrically.	238

## Scheme of Marking:

Accuracy	$=18$
Proper Technique and Presentation	$=03$
Calculation (Calculation + Graph)	$=09(5+4)$
Viva voce	$=05$
Journal	$=05$
Total	$=40$ Marks

NB: 1. Scientific calculators are not allowed.
2. Use A4 size graph sheets.

Note: Paper -II has experiments related to Physical and Organic exercises with equal weightage. Hence, they are to be allotted on the basis of lot (For a batch of ten students, five Physical and five organic)

## Expt No 1: CONDUCTOMETRIC TITRATION (Acid -Base)

Aim: To determine the concentrations of given acids in a mixture $\left(\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COOH}\right)$ conductometrically using standard NaOH
Chemicals: $\sim 0.1 \mathrm{~N} \mathrm{HCl}, \sim 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 N NaOH .
Apparatus: Conductometer, conductivity cell, glass rod, pipette, burette, beaker etc.
Theory: This type of titration is just a combination of two separate titrations viz. HCl against NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$ against NaOH . By adding alkali to the mixture, conductivity of the solution decreases due to replacement of $\mathrm{H}^{+}$ions from strong acid. It then increases slowly as the weak acid converts into salt and finally rises steeply as the excess of alkali is added.

$$
\begin{array}{cl}
\mathrm{HCl}+\mathrm{NaOH} & \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} & \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

A graph of conductivity against volume of alkali gives three straight lines and the intersection of these lines give end points. It must be noted that the first end point will be that of HCl (strong acid) and second is for $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid).

## Procedure:

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 25 cc each of $0.1 \mathrm{~N} \mathrm{HCl} \& 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ into a 100 cc beaker.
5. Place the conductivity cell and connect to the terminals of the conductivity meter.
6. Note the conductance of the solution before adding the alkali in mS .
7. Rise up the electrodes and add 0.5 cc of the NaOH solution from micro burette carefully and stir the solution with glass rod. There may be a slight heating effect due to neutralization and hence, wait for 30 seconds to cool. Note down the conductance.
8. Now add 0.5 cc of 0.5 NaOH solutions every time from the burette into the above solution with stirring. Note the conductance of the solution for every addition.
9. Continue the titration by adding 0.5 cc at a lot up to 15 cc and record the conductance for every addition.
10. Plot a graph of conductance against volume of NaOH added. Find out the end point from the intersection of lines.
11. First inter section will be the end point for HCl (strong acid) and second for $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid).
12. Calculate the normality and amount of acids.

## Observation:

Total volume of acid mixture $=25 \mathrm{cc} 0.1 \mathrm{~N} \mathrm{HCl}+25 \mathrm{cc} 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}=50.0 \mathrm{cc}$

Volume of alkali added   $(\mathrm{cc})$	Observed Conductance   $(\mathrm{mS})$
0.0	
0.5	
1.0	
1.5	
2.0	
$\cdot$	
$\cdot$	
.	

Nature of the Graph


## Calculation:

(i) For HCl (I End point)

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& \mathrm{~N}_{1}=\underline{0.5} \times \text { B.R from graph }\left(\mathrm{V}_{1}\right) \\
& 50
\end{aligned}
$$

(ii) For $\mathrm{CH}_{3} \mathrm{COOH}$ (II End point)

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& \mathrm{~N}_{1}=\frac{0.5 \times \text { B.R from graph }}{50 \mathrm{cc}}=\frac{0.5 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)}{50}
\end{aligned}
$$

(iii) The amount of $\mathrm{HCl} \quad=$ Normality of $\mathrm{HCl} \times$ Equivalent mass of HCl

$$
\text { = --------x } 36.5
$$

=- --------g/dm³
(iv) The amount of $\mathrm{CH}_{3} \mathrm{COOH}$

$$
=\text { Normality of } \mathrm{CH}_{3} \mathrm{COOH} \times \text { Equivalent mass of } \mathrm{CH}_{3} \mathrm{COOH}
$$

$$
\begin{aligned}
&=------- x \\
& 60 \\
&=-------g / d m^{3}
\end{aligned}
$$

## Results:

1. Normality of $\mathrm{HCl}=\ldots \ldots \ldots . . \mathrm{N}$
2. Amount of $\mathrm{HCl}=\ldots \ldots \ldots . . \mathrm{g} / \mathrm{dm}^{3}$
3. Normality of $\mathrm{CH}_{3} \mathrm{COOH}=\ldots \ldots \ldots \ldots . \mathrm{N}$
4. Amount of $\mathrm{CH}_{3} \mathrm{COOH}=\ldots \ldots \ldots . . \mathrm{g} / \mathrm{dm}^{3}$

## Expt. No. 02: CONDUCTOMETERY (Solubilty-BaSO4)

AIM:- To determine the solubility and solubility product of Sparingly soluble salt $\left(\mathrm{BaSO}_{4}\right)$ conductometrically.
Chemicals: - $\mathrm{BaSO}_{4}$ powder, distilled water and 0.1 N KCl .
Apparatus: Conductometer, conductivity cell, glass rod, beaker etc.
Theory: The solubility of sparingly soluble salts like $\mathrm{AgCl}, \mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}$ etc can be determined by conductometric measurements. As the solubility of the sparingly soluble salt is extremely low, a small quantity that is dissolved in saturated solution may be regarded as present at infinite dilution. Thus, its equivalent conductance $\lambda_{\mathrm{v}}$ may be taken as the equivalent conductance at infinite dilution $\lambda_{\infty}$.

Thus, $\lambda_{v}=\lambda_{\infty}=\lambda_{+}+\lambda_{-}$
Knowing the specific conductance, the solubility of sparingly soluble salt i.e $\mathrm{BaSO}_{4}$ can be calculated.
Concentration of sparingly soluble salt $=$ Solubility, $S=\frac{1000 \mathrm{~K}}{\lambda^{0}{ }_{\mathrm{m}}}$
Where, ' $\lambda{ }^{0}{ }_{\mathrm{m}}$ ' is molar conductance at infinite dilution.

## Procedure:

## A) Determination of cell constant :

1. Switch on the conductivity meter for stabilization.
2. Calibrate the conductivity meter if necessary.
3. Wash the electrode of the conductivity cell with distilled water.
4. Pipette out 50 cc of 0.1 N KCl solution to 100 cc beaker.
5. Place the conductivity cell in the beaker and connect it to the terminals of conductivity meter.
6. Note down the conductance of the solution in mS .
7. Calculate the cell constant.

## B). Determination of Solubility of $\mathrm{BaSO}_{4}$

1. Measure the conductance of conductivity water (distilled water).
2. Grind 2 g of $\mathrm{BaSO}_{4}$ to fine powder. Add conductivity water. Stir well and allow the solid to settle down. Decant the supernatant liquid and reject it.
3. Wash the $\mathrm{BaSO}_{4}$ paste three to four times with fresh distilled water to dissolve out all the soluble impurities.
4. Add about 50 cc of conductivity water to the above paste; warm the solution gently with stirring for about 5 minutes (solution becomes saturated).
5. Allow the heavier particles to settle down by cooling to room temperature. Decant the solution and determine the conductance.
6. Repeat the same procedure for two more times for the same paste and record the conductance of the solution as above.

## Observations:

A) Determination of cell constant :

1. Observed conductance of 0.1 N KCl soln.

$$
=\quad \ldots . . \times 10^{-3} \mathrm{~S}
$$

2. Specific conductance of 0.1 N KCl soln. at room temperature $=0.01288 \mathrm{~S} \mathrm{~cm}^{-1}$
3. Determination of cell constant:

$$
\begin{aligned}
\text { Cell constant } & =\frac{\text { Specific conductance of } 0.1 \mathrm{~N} \mathrm{KCl}}{\text { Observed conductance }} \\
& =\frac{0.01288}{\text { Observed conductance }} \\
& =---------\mathrm{cm}^{-1}
\end{aligned}
$$

B). Determination of Solubility of $\mathrm{BaSO}_{4}$

1. Observed conductance of conductivity water, $\mathrm{C}_{1}=\ldots . . \times 10^{-6} \mathrm{~S}$
2. Equivalent conductance of $\mathrm{BaSO}_{4}$ at infinite dilution

$$
\begin{aligned}
\lambda_{\infty} \quad & =\lambda_{\mathrm{Ba}}{ }^{2+}+\lambda_{\mathrm{SO} 4}{ }^{2-} \\
& =64.3+80.0 \\
& =144.3
\end{aligned}
$$

3. Molar Conductance of $\mathrm{BaSO}_{4}$ at infinite dilution

$$
\lambda^{0}{ }_{\mathrm{m}}=\lambda_{\infty} \times 2=144.3 \times 2=288.6
$$

S1.No	Observed   Conductance   of solution   $\left(\mathrm{C}_{2}\right)$	Actual   conductance   $=\mathrm{C}_{2}-\mathrm{C}_{1}$	Specific Cond (к)   $=$ Cell const $\times$ Actual   Conductance	Solubility, $\mathrm{S}=\frac{1000 \mathbf{K}}{\lambda^{0}{ }_{\mathrm{m}}}$
$\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$				

## Calculations:

1. Solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{BaSO}_{4}=(\text { Solubility })^{2}=$ $\qquad$ $\mathrm{mol}^{2} / \mathrm{dm}^{6}$
2. The solubility of $\mathrm{BaSO}_{4}$ in $\mathrm{g} / \mathrm{dm}^{3}=$ solubility x molar mass of $\mathrm{BaSO}_{4}$

$$
=\quad------\quad \text { x } \quad 233.3
$$

Result:

1. Solubility of $\mathrm{BaSO}_{4}=----------\mathrm{g} / \mathrm{dm}^{3}$
2. Solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{BaSO}_{4}=\ldots \ldots \ldots \ldots \mathrm{mol}^{2} / \mathrm{dm}^{6}$

Note: Expected value of solubility of $\mathrm{BaSO}_{4}=2.5 \times 10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$

## POTENTIOMETRIC TITEATION (Redox )

Aim: Determination of redox potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ using of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ solution ( $\approx 0.1 \mathrm{~N}$ ) by potentiometric titration against the standard solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(0.1 \mathrm{~N})$.
Chemicals: $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \approx 0.1 \mathrm{NFeSO}_{4}$ and $4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$.
Apparatus: Potentiometer, calomel electrode, platinum electrode, burette, pipette, beaker etc.
Theory: When an inert electrode is inserted in a solution containing $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ ions, potential develops. Its oxidation potential can be given as:

$$
\mathrm{E}\left(\mathrm{Fe}^{3+/} \mathrm{Fe}^{2+}\right)=\mathrm{E}^{0}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)+0.0594 \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}
$$

If a reference electrode like calomel is connected to the platinum (indicator) electrode dipped in the $\mathrm{Fe}^{2+}$ solution containing $\mathrm{H}^{+}$, a cell is set up which can be represented as below:

- $\mathrm{Hg} / \mathrm{Hg}^{+} / / \mathrm{Fe}^{3+}-\mathrm{Fe}^{2+} / \mathrm{Pt}^{+}$

Therefore, $\mathrm{E}_{\text {cell }}=\left(\mathrm{E}^{\mathrm{o}}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)-\mathrm{E}^{0} \mathrm{Cal}\right)+0.0594 \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}$

EMF of the cell depends on the ratio of $\left[\mathrm{Fe}^{3+}\right] /\left[\mathrm{Fe}^{2+}\right]$. When the potassium dichromate solution is added, $\mathrm{Fe}^{2+}$ ions are oxidized to $\mathrm{Fe}^{3+}$ and thereby EMF will increase slowly. At the end point, there will be a sharp change due to the conversion of all the $\mathrm{Fe}^{2+}$ ions to $\mathrm{Fe}^{3+}$ ions. Graph of EMF v/s volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ gives a sigmoid curve (S-type) and $\Delta \mathrm{E} / \Delta \mathrm{V}$ v/s volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ added gives a sharp peak, the equivalence point. From the sigmoid curve, the half equivalence point can be determined.

$$
\begin{aligned}
& \text { Therefore, } \mathrm{E}_{\text {cell }}=\left(\mathrm{E}^{0}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)-\mathrm{E}^{0} \mathrm{Cal}\right) \\
& \text { Reaction: } \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& 6 \mathrm{Fe}^{2+} \quad \longrightarrow \quad 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-} \\
& 6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## Procedure:

1. Pipette out 25 cc of given ferrous sulfate solution in 100 cc beaker and add 25 cc of $4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to it. Fill the burette with $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
2. Switch on the potentiometer and standardize the potentiometer by inserting two banana plugs into the sockets at channel I or II and adjust the EMF to 1.018 V with the calibration screw. Remove these plugs after standardization.
3. Place the platinum electrode in the above ferrous sulfate solution and calomel electrode in another beaker having about 50 cc saturated KCl solution. Connect the solutions internally through KCl salt bridge and electrodes externally to the terminals of Potentiometers at either channel I or II at which
it is standardized i.e., calomel electrode to negative and platinum electrode to positive terminals of the potentiometer.
4. Record the EMF at 0.0 volume.
5. Start the titration by adding 1.0 cc of $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ at a lot with stirring and record the EMF every time. Meanwhile, observe the rapid change in EMF at certain volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ where there will be an equivalence point (approximate). Continue the addition up to 32 cc .
6. Plot the graphs of ;
i. $\Delta \mathrm{E} / \Delta \mathrm{V} \quad \mathrm{v} / \mathrm{s}$ volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ added which gives a sharp peak (graph-I). Find out the equivalence point.
ii. EMF v/s volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ added which gives a sigmoid curve (graph-II) and
7. From the equivalence point, find out the EMF for half equivalence point from sigmoid curve (graphII). Calculate the redox potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ using a suitable equation.

## Observations:

Solution in beaker $=25 \mathrm{cc} \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}+25 \mathrm{cc} 4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$

## Table

Volume of 0.1N   $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (V cc)	EMF in   Volts (E)	$\Delta \mathrm{V}$	$\Delta \mathrm{E}$	$\frac{\Delta \mathrm{E}}{\Delta \mathrm{V}}$
0.0		-----	------	----
1.0				
2.0				
-				
-				
32.0				

Nature of the graph



## Calculation

1. Normality of Ferrous sulphate

$$
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \quad \mathrm{~N}_{1}=(0.1 \times \text { BR from graph }) / 25
$$

2. Redox potential $\left(\mathrm{E}^{0}\right)$ of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=\mathrm{E}_{\text {cell }}+\mathrm{E}^{0}$ calomel

$$
\text { Where, } \mathrm{E} \text { cell } \quad=\mathrm{EMF} \text { at half equivalence point (from graph ) }
$$

$$
\mathrm{E}^{0} \text { calomel }=0.2422 \mathrm{~V}
$$

Result : Redox potential $\left(\mathrm{E}^{0}\right)$ of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ $\qquad$

## Expt No. 4

## POTENTIOMETRY (Solubility product)

AIM: To determine the solubility and solubility product of sparingly soluble salts ( AgCl ) potentiometrically.
Chemicals: $0.01 \mathrm{M} \mathrm{KCl}, 0.01 \mathrm{M} \mathrm{AgNO}_{3}$, Saturated $\mathrm{NH}_{4} \mathrm{NO}_{3} / \mathrm{KNO}_{3}$ solution.
Apparatus: Two silver electrodes, potentiometer, $\mathrm{NH}_{4} \mathrm{NO}_{3} / \mathrm{KNO}_{3}$ salt bridge etc.

## Theory:

The following cell is constructed:
${ }^{(-)} \mathrm{Ag} / 0.01 \mathrm{M} \mathrm{KCl} / /$ sat. $\mathrm{AgCl} / / \mathrm{Sat} . \mathrm{NH}_{4} \mathrm{NO}_{3} / / 0.01 \mathrm{M} \mathrm{AgNO}_{3} / \mathrm{Ag}^{(+)}$
Above cell is a concentration cell reversible with respect to silver ions. One Ag electrode is in connection with a solution of $\mathrm{Ag}^{+}$ions of known concentration, ( 0.01 M ) by assuming $\mathrm{AgNO}_{3}$ be completely ionized at this dilution. Other electrode is in contact with a solution of much lower concentration of $\mathrm{Ag}^{+}$ions (furnished by the ionization of sparingly soluble salt AgCl formed by adding a drop of $\mathrm{AgNO}_{3}$ solution to KCl ), which has unknown concentration. EMF ( $\mathrm{E}_{\text {cell }}$ ) of the cell can be determined using equation.

$$
\begin{array}{ll}
\mathrm{E}_{\text {cell }}=\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{\left(\mathrm{a}_{\mathrm{Ag}+}\right)_{\mathrm{r}}}{\left(\mathrm{a}_{\mathrm{Ag}+}\right)_{1}} & =0.0592 \log \frac{\left(\mathrm{a}_{\mathrm{Ag}+}\right)_{\mathrm{r}}}{\left(\mathrm{a}_{\mathrm{Ag}+}\right)_{1}} \\
\mathrm{E}_{\text {cell }}=0.05921 \log \frac{0.01}{\left(\mathrm{a}_{\mathrm{Ag}+}\right)_{1}} & =0.05921 \log \frac{0.01}{\left[\mathrm{Ag}^{+}\right]}
\end{array}
$$

Thus, knowing the value of $\mathrm{E}_{\text {cell, }}$, one can easily calculate the value of $\left[\mathrm{Ag}^{+}\right]$from which solubility product ( $\mathrm{K}_{\mathrm{sp}}$ ) can also be calculated.

## Procedure:

1. Pipette out 25 cc of the given 0.01 M KCl solution in to 100 cc beaker and add $2-3$ drops of $\mathrm{AgNO}_{3}$ solution to form a precipitate of AgCl , which gives a saturated solution of AgCl in 0.01 M KCl solution.
2. Pipette out 10 cc of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ solution in another 100 cc beaker.
3. Switch on the potentiometer and standardize the potentiometer by inserting two banana plugs into the sockets at channel I or II and adjust the EMF to 1.018 V with the calibration screw. Remove these plugs after standardization
4. Place two sensitized silver electrodes in these two separate beakers containing respective solutions. Connect them internally with the salt bridge filled with saturated ammonium nitrate or potassium nitrate solution.
5. Connect the silver electrodes to the terminals of the potentiometer as noted in the cell convention.
6. Observe the EMF of the cell ( E cell) from the potentiometer.
7. Add 10 cc of $\mathrm{H}_{2} \mathrm{O}$ to second beaker already contains $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ to make $0.005 \mathrm{M} \mathrm{AgNO}_{3}$ and determine its EMF.
8. Similarly, add $20 \mathrm{cc}_{2} \mathrm{O}$ to the above beaker to get $0.0025 \mathrm{M} \mathrm{AgNO}_{3}$ and determine its EMF and also for 0.00125 M solution.

## Observations:

Concentration of $\mathrm{AgNO}_{3}(\mathrm{M})$	Cell EMF   (V)		$\left[\mathrm{Ag}^{+}\right]$	$\mathrm{K}_{\text {sp }}=$	Solubility $S=$
0.01		$\text { Antilog }\left(\frac{\text { EMF }}{(0.05921)}\right)$			
0.005					
0.0025					
0.00125					
				Average, $\mathrm{K}_{\mathrm{sp}}=$	Average, $S=$

## Calculations

1. The concentration of $\mathrm{Ag}^{+}$ions in 0.01 M KCl solution, $[\mathrm{Ag}+$ ]

$$
\left[\mathrm{Ag}^{+}\right]=\frac{\left[\mathrm{AgNO}_{3}\right]}{\text { Antilog }\left(\frac{\mathrm{EMF}}{(0.05921)}\right)}
$$

2. The concentration of $\mathrm{Cl}^{-}$ions in this solution is $\approx 0.01 \mathrm{~mol} / \mathrm{dm}^{3}$
3. Therefore, the solubility product of $\mathrm{AgCl}, \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$

$$
\begin{array}{ll}
= & {\left[\mathrm{Ag}^{+}\right] \times 0.01} \\
= & -------\mathrm{mol}^{2} / \mathrm{dm}^{6}
\end{array}
$$

4. Similarly calculate $\mathrm{K}_{\text {sp }}$ for $0.005 \mathrm{M} \& 0.0025 \mathrm{M} \mathrm{AgNO}_{3}$ solutions
5. Calculate the solubility of $\mathrm{AgCl}\left(\right.$ for all $\left.\mathrm{K}_{\mathrm{sp}}\right) \mathrm{S}=\sqrt{ } \mathrm{K}_{\mathrm{sp}}=$ $\qquad$

## Results:

1. Average solubility(S) of AgCl
$=\quad--------\mathrm{mol} / \mathrm{dm}^{3}$
2. Average $\mathrm{K}_{\text {sp }}$ value of AgCl at $0.01 \mathrm{MAgNO}_{3}=\quad--------\mathrm{mol}^{2} / \mathrm{dm}^{6}$

Note: 1. The silver electrodes can be sensitized by dipping into $1: 1 \mathrm{HNO}_{3}$ solution containing a little $\mathrm{NaNO}_{3}$ till gas formation starts.
2. Theoretical $\mathrm{K}_{\text {sp }}$ value of $\mathrm{AgCl}=2.0 \times 10^{-10} \mathrm{~mol}^{2} / \mathrm{dm}^{6}$
3. Theoretical value of solubility of $\mathrm{AgCl}=1.76 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$

## Exp. No. 5 REFRACTOMETRY (Formula Method)

Aim: To determine the percentage composition of unknown mixture of A \& B liquids using Abbe's Refractometer (formula method)
Apparatus: Abbe's refractometer and accessories.
Chemicals: Two pure liquids A and B and one mixture ' $C$ ' of their unknown composition.

## Theory:

Refractive index of a liquid varies with the temperature as well as wavelength of light used. Therefore, this cannot be used satisfactorily for comparing the constitutions of the substance. But the Lorentz and Lorenz expression is used as given bellow.
$\mathrm{R}=\frac{\boldsymbol{n}^{2}-1}{\boldsymbol{n}^{2}+2} \times \frac{1}{\boldsymbol{d}}$ where ' n ' is RI and ' d ' is density
' $R$ ' is specific refraction, which is additive as well as constitutive property. It is also used to calculate the percentage of unknown composition of binary mitxture

Percentage Composition of 'A' in 'C' $=\frac{100\left(R_{c}-R_{b}\right)}{\left(R_{a}-R_{b}\right)}$
Where ' $R_{a}$ ' is specific refraction of ' $A$ '
Where ' $R_{b}$ ' is specific refraction of ' $B$ '
Where ' $R_{c}$ ' is specific refraction of ' $C$ '

## Procedure:

1. Open the prism box and clean the prism surface with ether. Blow the air to dry the prism.
2. Introduce 0.5 cc of liquid between the prisms and close the prism box.
3. Focus the mirror to reflect the light in to prism box. Turn the right hand knob till the color fringes are seen. Then make it sharp (partly black and partly white) by rotating the RHS knob, compensator.
4. With the help of LHS knob, adjust the line of demarcation at the point of intersection of cross wire. Observe the refractive index (RI) directly from the scale up to fourth decimal place.
5. Similarly, determine the RI for all the given liquids. Take at least three independent settings for each liquid and use the average of these.
6. Determine the density of liquid $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ at the temperature in which the RI is being determined.
7. Calculate the specific refraction for each of the various liquids by using Lorentz and Lorenz formula.
8. Calculate the percentage of liquid A in liquid mixture C .

## Observations I :

Liquid		A	B	C
Percentage Composition	100	100	-	
Density, g/cc				
Settings (n $\left.\mathrm{n}_{1}\right)$	i			
$\left(\mathrm{n}_{2}\right)$	ii			
$\left(\mathrm{n}_{3}\right)$	iii			
Mean (n)				
Specific Refraction (R)				

## Observations II:

1. Wt. of empty Sp. Gravity bottle
$=W_{1} \mathrm{~g}$
2. Wt. of empty Sp. Gravity bottle+ liquid
$=W_{2} \mathrm{~g}$
3. Wt. of empty Sp. Gravity bottle+ water

$$
=\mathrm{W}_{3} \mathrm{~g}
$$

4. Wt. of water

$$
=\left(\mathrm{W}_{3}-\mathrm{W}_{1}\right) \mathrm{g}
$$

5. Wt. of liquid
$=\left(W_{2}-W_{1}\right) g$

## Calculations:

$$
\text { Density , d }=\frac{\text { Wt. of liquid }}{\text { Wt. of water }}
$$

1) Specific refraction, $R=\frac{\boldsymbol{n}^{2}-1}{\boldsymbol{n}^{2}+2} \times \frac{1}{\boldsymbol{d}} \quad$ where ' $n$ ' is $R I$ and ' $d$ ' is density.
2) Percentage Composition of ' A ' in ' C ' $=\frac{100\left(R_{c}-R_{b}\right)}{\left(R_{a}-R_{b}\right)}$

Where ' $R_{a}$ ' is specific refraction of ' $A$ '
Where ' $R_{b}$ ' is specific refraction of ' $B$ '
Where ' $R_{c}$ ' is specific refraction of ' $C$ '

## Result:

1. Percentage composition of ' A ' in ' C ' $=$ $\qquad$
2. Percentage composition of ' B ' in ' C ' =

Exp. No. 6 REFRACTOMETRY (Graphical Method)

Aim: To determine the percentage composition of unknown mixture of A \& B liquids using Abbe's Refractometer (graphical method).
Apparatus: Abbe's refractometer and accessories.
Chemicals: Two pure liquids A and B and four mixtures of known percentage composition by weight of A and B and one mixture ' $C$ ' of unknown composition.

## Theory:

Refractive index of a liquid varies with the temperature as well as wavelength of light used. Therefore, this cannot be used satisfactorily for comparing the constitutions of the substance. But the Lorentz and Lorenz expression is used as given bellow.

$$
\mathrm{R}=\frac{\boldsymbol{n}^{2}-1}{\boldsymbol{n}^{2}+2} \times \frac{1}{\boldsymbol{d}} \text { where ' } \mathrm{n} \text { ' is RI and ' } \mathrm{d} \text { ' is density }
$$

' R ' is specific refraction, which is additive as well as constitutive property. It is also used to calculate the percentage of unknown composition of mixture by plotting a graph of specific refraction against percentage composition of the given known mixture.

## Procedure:

1. Open the prism box and clean the prism surface with ether. Blow the air to dry the prism.
2. Introduce 0.5 cc of liquid between the prisms and close the prism box.
3. Focus the mirror to reflect the light in to prism box. Turn the right hand knob till the color fringes are seen. Then make it sharp (partly black and partly white) by rotating the RHS Knob, compensator.
4. With the help of LHS knob, adjust the line of demarcation at the point of intersection of cross wire. Observe the refractive index (RI) directly from the scale up to fourth decimal place.
5. Similarly, determine the RI for all the given liquids. Take at least three independent settings for each liquid and use the average of these.
6. Determine the density of liquid ' C ' at the temperature at which the RI is being determined.
7. Calculate the specific refraction for each of the various liquids by using Lorentz and Lorenz formula.
8. Plot a graph 'R' against composition, which gives a straight line. From the graph, read the composition of the mixture of unknown composition.

## Observations I :

Liquid		A	B	C	M1	M2	M3	M4
\%age Composition		100	100	-	$\mathrm{A}=40$	A=50	$\mathrm{A}=60$	A=70
					$\mathrm{B}=60$	$\mathrm{B}=50$	$\mathrm{B}=40$	$\mathrm{B}=30$
Density, g/cc		0.873	1.579		1.212	1.138	1.075	1.034
Settings ( $\mathrm{n}_{1}$ )	i							
$\left(\mathrm{n}_{2}\right)$	ii							
$\left(\mathrm{n}_{3}\right)$	iii							
Mean (n)								
Specific refraction, R								

## Observations II:

1. Wt. of empty Sp. Gravity bottle $=\mathrm{W}_{1} \mathrm{~g}$
2. Wt. of empty Sp. Gravity bottle + liquid $\mathrm{C}=\mathrm{W}_{2} \mathrm{~g}$
3. Wt. of empty Sp. Gravity bottle+ water $=\mathrm{W}_{3} \mathrm{~g}$
4. Wt. of water
5. Wt. of liquid C
$=\left(\mathrm{W}_{3}-\mathrm{W}_{1}\right) \mathrm{g}$
$=\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) \mathrm{g}$

## Calculation:

1. Density, $\mathrm{d}_{\mathrm{c}}$

Wt. of liquid, C

1. Density, $\mathrm{a}_{\mathrm{c}} \quad$ Wt. of water
2. Specific refraction, $\mathrm{R}=\frac{\boldsymbol{n}^{2}-1}{\boldsymbol{n}^{2}+2} \times \frac{1}{\boldsymbol{d}}$

## Nature of graph



$$
\begin{aligned}
& \mathrm{A}=0 \% \\
& \mathrm{~B}=100 \%
\end{aligned} \longrightarrow \begin{aligned}
& \mathrm{A}=100 \% \\
& \mathrm{~B}=0 \%
\end{aligned}
$$

Result: From the graph

1. Percentage composition of ' A ' in ' C ' $=$ $\qquad$
2. Percentage composition of ' B ' in ' C ' =

## Expt No. 7

## POTENTIOMETRY ( $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ )

AIM: To determine the $\mathrm{pK}_{\mathrm{a}}$ of acetic acid potentiometrically.
Chemicals: 0.2 N NaOH , approx $0.2 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$, Quinhydrone etc.
Theory: Dissociation of an acid may be represented by the equation

$$
\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

When the acid is half neutralized, the concentration of acid and the concentration of its salt in the solution will be equal. For a weak acid the concentration of undissociated acid molecules can be assumed to be unchanged, by a small fraction which dissociates to provide the hydrogen ions. The salt can be regarded as fully dissociated and hence the concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions can be assumed to be equal to that of the salt formed into any stage of titration.

For the half neutralization stage:

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \times\left[\mathrm{H}^{+}\right] \\
& \mathrm{K}=\left[\mathrm{H}^{+}\right] \mathrm{Or} \mathrm{pK}=\mathrm{pH}
\end{aligned}
$$

Thus, the dissociation constant may be calculated from $\left[\mathrm{H}^{+}\right]$or pH values for the half neutralized solution of the acid at different stages of titration and the corresponding values at the $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion concentrations.

## Procedure:

1. Pipette out 25 cc of the given $\mathrm{CH}_{3} \mathrm{COOH}$ solution in a beaker and add a pinch of solid quinhydrone and stir the solution with a glass rod. Keep it for a while.
2. Fill the burette with exact 0.2 N NaOH solution.
3. Switch on the potentiometer and standardize the potentiometer by inserting two banana plugs into the sockets at channel I or II and adjust the EMF to 1.018 volts with the calibration screw. After standardization remove these plugs.
4. Place the platinum electrode in the above quinhydrone solution and calomel electrode in another beaker having about 50 cc saturated KCl solution. Connect the solutions internally through KCl salt bridge and electrodes externally to the terminals of Potentiometers at either channel I or II at which it is standardized i.e., calomel electrode to negative and platinum electrode to positive terminals of the potentiometer. Record the EMF at 0.0 volume.
5. Start titration by adding 1.0 cc of 0.2 N NaOH at a lot with constant stirring and record the EMF every time. Meanwhile, observe the rapid change in EMF at certain volume of NaOH where there
will be an equivalence point (approximate) and EMF will be in -ve value. Continue the additions for another 04 readings after -ve EMF are obtained.
6. Plot a graph of EMF v/s volume of NaOH added which gives a reverse sigmoid curve. Find out the equivalence point and EMF at half neutralization point( $\left.\mathrm{E}_{\text {cell }}\right)$.

Observations
Solution in beaker $=25 \mathrm{cc} 0.2 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+$ quinhydrone

Volume of 0.2N NaOH added	EMF (V)
0.0	---
1.0	
2.0	
$\cdots$	
$\cdots$	
$\cdots$	

## Nature of the graph


$\therefore$ EMF for half neutralization of an acid solution from the graph $\left(\mathrm{E}_{\text {cell }}\right)=\ldots$. volts

## Calculations

We have,

$$
\mathrm{pH}=\frac{0.456-\mathrm{E}_{\text {cell }}}{0.0592}
$$

$\qquad$
At half neutralization point, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

$$
\therefore \quad \mathrm{K}_{\mathrm{a}} \quad=\operatorname{antilog}\left(-\mathrm{pK}_{\mathrm{a}}\right)
$$

$$
=\ldots \ldots . .
$$

Result: The experimental $\mathrm{K}_{\mathrm{a}}$ value for the $\mathrm{CH}_{3} \mathrm{COOH}=$ $\qquad$
Note:

1. The theoretical $\mathrm{K}_{\mathrm{a}}$ value for the $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$
2. Use logarithm table for calculation of $\mathrm{K}_{\mathrm{a}}$ from - $\mathrm{pK}_{\mathrm{a}}$ otherwise, candidate shall lose marks reserved for calculations.
3. Keep the Pt wire in $1: 1 \mathrm{HNO}_{3}$ for a while before using.

## Physical Chemistry Experiments: Instruments based

Some of the experiments in Physical chemistry are based on instruments. Generally, simple instruments like conductometer, pH meter, potentiometer, colorimeters etc are used. These instruments are designed with electronic circuits. Maintenance of such instruments is very much necessary. Supplier will provide the instruction manual. Manual will have all the necessary instructions about maintenance of the instruments and electrodes. However, following are the tips to maintain and check the working conditions of the instruments.

1. Switch on the instruments at least 10 minute prior to the use for stabilization.
2. If no light glows in the instruments, check the fuse and replace.
3. Check the colorimeter for water to get OD zero for filter No. 510 nm . If not to zero, please change the lamp.
4. Calibrate conductometer and potentiometer frequently.
5. Keep away the instruments from moisture and acid fumes.
6. Use soft tissue paper for removal of liquid from the surface of prism in Refractometer otherwise surface of prism spoils.
7. Do not wipe out the surface of colorimetric cell with ordinary filter paper, use tissue paper. To get reproducible result, focus the cell to light in cell holder by keeping every time the cell with the same face by marking in the cell with marker.

## Maintenance of electrodes

## 1. Platinum Electrode

* Should be dipped in dil. $\mathrm{HNO}_{3}$ for 2 hours in alternative day.
* If not used for long period - preserve in dry condition after cleaning with dil. $\mathrm{HNO}_{3}$ with air tight packing.
* Before reusing - Keep it in distilled water for 2 hrs .


## 2. Conductivity Cell

* Always preserve in distilled water.
* If not used for long period - preserve in dry condition after cleaning with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with air tight packing.
* Before reusing - Keep it in distilled water/ dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ for 2 hrs .

3. Combined Glass Electrode

* Always preserve in $4 \mathrm{~N} \mathrm{KCl} / 0.01 \mathrm{~N} \mathrm{HCl} /$ Buffer soln. of $\mathrm{pH}=4.0$
* Never preserve in water but never allow drying.
* If not used for long period - Do not preserve in dry condition but keep the glass bulb in black boot wetted with 4 N KCl . Check weekly the wetting condition and recharge.
* Before reusing - Keep it in $4 \mathrm{~N} \mathrm{KCl} / 0.01 \mathrm{~N} \mathrm{HCl} /$ Buffer soln. of $\mathrm{pH}=4.0$ for 10 minutes.
* Fill the side tube with 4 N KCl solutions if necessary.
* Do not wipeout the glass bulb from ordinary filter paper. Use soft tissue paper otherwise membrane spoils.


## 4. Calomel Electrode

* Always preserve in Saturated KCl. Never preserve in water.
* If not used for long period - preserve in dry condition after cleaning with dil. $\mathrm{HNO}_{3}$ with air tight packing.

Fill the side tube with Saturated KCl solutions if necessary.

## Replatinization of Conductivity cell

* Remove the old coating by keeping the cell in dilute aqua-regia.
* Further, clean with warm dil. Potassium dichromate in $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by water.
* Coating:
i. $\quad 01 \mathrm{~g}$ Platinum Chloride +0.007 g Lead Acetate 30 ml of $50 \% \mathrm{HCl}$.
ii. Keep the cell and connect to 3-4 V Battery, pass the current with 30 mA for 2 minutes.
iii. Interchange the terminals and repeat the same.
iv. Clean the electrodes with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by distilled water.


## Reference books

1. Practically Chemistry by B.D. Khosla.
2. Text book on Practical Chemistry by K.S. Mukherjee.
3. Experimental Physical Chemistry by V. D. Atwale and Parul Mathur.
4. Advanced Practical Chemistry by Mukhopadhyay and P. Chatterjee, Books and Allied, Kolkata (2004).
5. An Advanced course in Practical Chemistry by Ghoshal Mahapatra and Nad.
6. Advanced Physical Chemistry by Gurdeep Raj, $39^{\text {th }}$ ed-2014.
7. Food Microbiology by Frazier \& Westhoff, $4^{\text {th }}$ Edn.
8. Advanced Experimental Chemistry-Vol. II by Gurtu \& Kapoor.
9. Practical Chemistry by Pandey, Bajpai \& Giri
10. A.I. Vogel, A text book of quantitative Inorganic Analysis. $4^{\text {th }}$ ed., ELBS, New York, 1978.
11. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's text book of Quantitative Chemical Analysis, $5^{\text {th }}$ ed. (Essex, UK: ELBS, Longman), 1996.

## Chem - Forum : 2017-18

## Commonly used Laboratory Reagents

Front shelf reagents and their concentrations: 13 Reagents

Sl.   No.	Name of the acid	Required Normality	Method of Preparation
1.	Hydrochloric acid ( HCl )	5N	Dilute 455 ml of conc. HCl to 1000 cc with distilled water.
2.	Nitric acid ( $\mathrm{HNO}_{3}$ )	5N	Dilute 310 ml of conc. $\mathrm{HNO}_{3}$ to 1000 cc with distilled water.
3.	Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	5N	Add 318 mlof conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ slowly and with constant stirring into about 500 cc of distilled water. Cool it and make up to 1000 cc by distilled water.
4.	Ammonium chloride $\mathrm{NH}_{4} \mathrm{Cl}$	5N	Dissolve 265 g in water and dilute to 1000 cc .
5.	Ammonium hydroxide ( $\mathrm{NH}_{4} \mathrm{OH}$ )	5N	Dilute 335 ml of conc. ammonia solution to 1000cc by distilled water.
6.	Ammonium carbonate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	4N	Dissolve 190 gms of the commercial sample in about 100 ml of conc. $\mathrm{NH}_{3}$ solution and dilute with water to 1000 cc .
7.	Ammonium oxalate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 35 gms in water and dilute to 1000cc.
8.	Barium chloride $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 61 g in water and dilute to 1000 cc .
9.	Mercuric chloride $\mathrm{HgCl}_{2}$	0.2 N	Dissolve 54 g in water and dilute to 1000 cc .
10.	Sodium hydroxide solution $(\mathrm{NaOH})$	5N	Dissolve 200 g of ordinary sample of NaOH (appx. $90 \% \mathrm{NaOH}$ by weight)in water. Cool it and dilute to make the solution 1000 cc .
11.	Disodium hydrogen phosphate $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	0.3 N	Dissolve 110 gms in water and dilute to 1000cc.
12.	Calcium sulphate $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.03 N	3 g of the salt dissolved and diluted to 1000cc allow to settle and decant.
13.	Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	4N	Dilute 230cc of glacial acetic acid to 1000cc with distilled water.

Note: Concentration of all acids and sodium hydroxide can also be reduced to half however; concentration of other reagents should be maintained without any deviation.

## Side shelf Reagents and their concentrations

Sl.   No.	Name of the acid	Required   Normality	Method of Preparation
1.	Ammonium acetate $\mathrm{CH}_{3} \mathrm{COONH}_{4}$	4N	Dissolve 231gms in water and dilute to 1000cc.
2.	Ammonium sulphate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	2N	Dissolve 132 gms in water and dilute to 1000cc.
3.	Ammonium thiocyanate $\mathrm{NH}_{4} \mathrm{CNS}$	0.5 N	Dissolve 38 gms in water and dilute to 1000cc.
4.	Calcium chloride $\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 55 gms in water and dilute to 1000cc.
5.	Cobalt nitrate $\mathrm{CO}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$	0.3 N	Dissolve 44gms in water and dilute to 1000cc..
6.	Copper sulphate $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 125 gms in water containing about 3 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and dilute to 1000 cc ..
7.	Ferric chloride $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 135 gms in water containing about 20 ml of conc. HCl and dilute to 1000 cc .
8.	Ferrous sulphate $\mathrm{FeSO}_{4 .} .7 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 140 gms of water containing 7 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and dilute.
9.	Lead acetate $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 95 gms in water and dilute to 1000cc..
10.	Potassium chromate $\mathrm{K}_{2} \mathrm{CrO}_{4}$	0.5 N	Dissolve 48.5 gms in water and dilute to 1000cc.
11.	Potassium cyanide KCN (Poisonous)	0.5 N	Dissolve 32.5 gms in water and dilute.
12.	Potassium ferriccyanide $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$	0.5 N	Dissolve 55 gms in water and dilute to 1000 cc .
13.	Potassium ferrocyanide $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H} 2 \mathrm{O}$	0.5 N	Dissolve 53 gms in water and dilute to 1000cc.
14.	Potassium iodide KI	0.5 N	Dissolve 3.2 gms in water and dilute to 1000cc.
15.	Potassium permanganate $\mathrm{KMnO}_{4}$	0.1 N	Dissolve 3.2 gms in water and dilute to 1000cc.. Filter through glass wool.
16.	Potassium thiocyanate KCNS	0.5 N	Dissolve 49 gms in water and dilute.
17.	Silver nitrate $\mathrm{AgNO}_{3}$	0.1 N	Dissolve 17 gms in water and dilute to 1000cc..
18.	Sodium acetate $\mathrm{CH}_{3} \mathrm{COONa} .3 \mathrm{H}_{2} \mathrm{O}$	3N	Dissolve 408 gms in water and dilute. To 1000cc
19.	Stannous Chloride $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	0.5 N	Dissolve 56 gms in about 100 ml of conc. HCl and dilute with water or dil HCl to 1000 cc ..
20.	Alcoholic KOH(10\%)	-	10 g KOH in 100cc $50 \%$ alcohol
21.	Bromine water	-	Dilute $10-15$ cc liq.Bromine with 1000 cc water. Or $5-6 \mathrm{cc}$ liq. $\mathrm{Br}_{2}$ in 50 cc water


			containing 20 g KBr . Dilute to 200 cc .
23	$\mathrm{Br}_{2}$ in acetic acid	-	20 cc Liq. $\mathrm{Br}_{2}$ in 80 cc glacial acetic acid
24	$\mathrm{KMnO}_{4}$		1 g in 100 cc water $(1 \%): 6 \mathrm{~g}$ in 100 cc water(6\%)
25	Alkaline $\mathrm{KMnO}_{4}$	-	3 g in 100 cc water containing $10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
26	$\mathrm{FeSO}_{4}$ solution(fresh)	-	15 g mixted with $1-2 \mathrm{cc}$ con. $\mathrm{H}_{2} \mathrm{SO}_{4} \&$ dilute with 100 cc water.
27	Neutral $\mathrm{FeCl}_{3}$ solution	-	10 g in 100 cc water
28	Alcoholic   solution $\mathrm{FeCl}_{3}$	-	10 g in 100 cc alcohol
29	$\mathrm{CaCl}_{2}$ solution		Dissolve 55 g of hydrated $\mathrm{CaCl}_{2}$ in 1000 cc water.
30	$\mathrm{NaNO}_{2}$ solution (10\%)	-	10 g in 100 cc water.
31	Sodium nitroprusside		Dissolve 3 g of compound in 1000 cc in water
32	Brady's reagent   (2,4 DNP)	-	Add $4 \mathrm{~g} 2,4$ dinitro phenyl hydrazine to 8 cc con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ add slowly with shaking \& cooling 70cc Methyl alcohol \& make up to 100 cc with water.
33	Iodine solution (for iodoform)	-	$20 \mathrm{~g} \mathrm{KI} \& 10 \mathrm{~g}$ Iodine in 100 cc water.
34	Picric acid	-	5 g in 100 cc alcohol or 100 cc benzene or glacial acetic acid
35	$\beta$-naphthol	-	10 g of compound in $100 \mathrm{cc} 10 \% \mathrm{NaOH}$.
36	Schiff's reagent	-	Rosaniline hydrochloride ( 0.2 g ) is dissolved in 100 cc water. \& solution is saturated with $\mathrm{SO}_{2}$ when colour of solution just vanishes.
37	Hydroxylamine hydrochloride	-	5 g in 100 cc methyl alcohol.
38	Tollen's reagent	-	2-3 drops of dil. NaOH (1\%) solution to 5 cc $\mathrm{AgNO}_{3}$. White ppt. obtained is dissolved in ammonia.
39	Aluminon	-	$0.1 \%$ solution in distilled water (use freshly prepared)
40	Dimethyl glyoxime	-	1\% solution in ethanol
41	Magneson	-	$0.5 \%$ in 0.2 N NaOH (pinch in 100 cc solution containing 0.800 g of NaOH )
42	5\% Picric acid	-	Dissolve 5 g of picric acid in 100 cc Ethanol
43	Calcium hydroxide solution $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right.$ )	0.04 N	Place 2-3 grams of quick lime in 1000cc of distilled water and allow it to stand for some time. Now decant it. The clear supernatant liquid lime water.


INDICATORS			
1	Phenolphthalein	-	Dissolve 0.5g of Phenolphthalein in 50 cc   of ethanol and add 50 cc of distilled water   with constant stirring, filter, if necessary
2	Methyl orange	-	Dissolve 50 mg of methyl orange in   distilled water and diluted to 100 cc filter, if   a ppt. is formed
3	Methyl red	-	Dissolve 0.1 g of methyl red in 100 cc of hot   distilled water and cool, filter, if a ppt. is   formed.
4	Starch	-	Add distilled water to about o.5 g of soluble   starch (A.R) taken in a beaker, stir with a   glass rod and heat to make transparent paste.   Pour into it 100 cc of boiling distilled water   with constant stirring and cool
5	Eriochrome Black-T	-	Dissolve 0.2 g of solid dyestuff in 15 cc   triethanolamine and 5cc ethanol or 0.5 g of   the dyestuff in 100 cc rectified spirit.
6	Potassium chromate	-	Dissolve 5g of A.R. Potassium chromate in   100 cc distilled water.

## Precautions in preparation of Reagents:

1. Wear apron.
2. Gas Masks.
3. Use Goggles.
4. Use hand glows.
5. Be away from the flame.
6. Be close to sink for water support.
7. Use distilled water for preparation of reagents.
8. Confirm that the laboratory having first aid box.
9. Never pour hot / cold sulphuric acid in to sink.
10. Use fuming chamber for preparation of $\mathrm{Br}_{2}$, and other volatile solutions.
11. For diluting sulphuric acid solutions: Add concentrated sulphuric acid to water slowly by cooling under tap. Never add water to concentred sulphuric acid for dilution of sulphuric acid.
12. Never use tap water for preparation of Sodium hydroxide and ammonium hydroxide solution at any condition.
13. Preserve conc. / dil. ammonia, Sodium hydroxide and lime water in well stopped bottles.
14. Do not keep conc. / dil. ammonia and hydrochloric acid bottles adjacent to each other.
15. Preserve the silver nitrate, potassium ferricyanide, iodine, potassium permanganate solutions etc in amber colour bottle.

Universal Method of Numbering the General Reagent Bottles in Chemistry Laboratory			
SL.NO	Name of Reagents	Sl.No	Names of Reagent
1	Hydrochloric acid(dil)	32	Iodine( $\mathrm{I}_{2}$ )
2	Nitric acid (dil)	33	Lime water
3	Sulphuric acid (dil)	34	Lead acetate
4	Ammonium chloride	35	Methanol
5	Ammonium hydroxide	36	$\beta$-Naphthol in NaOH
6	Ammonium carbonate	37	Potassium chromate
7	Ammonium oxalate	38	Potassium dichromate
8	Barium chloride	39	Potassium iodide
9	Mercuric chloride	40	Potassium permanganate
10	Sodium hydroxide	41	Potassium ferrocyanide
11	Sodium hydrogen phosphate	42	Potassium ferricyanide
12	Calcium sulphate	43	Potassium pyroantimonate
13	Acetic acid	44	Picric acid
14	Acetic anhydride	45	Potassium sulphocyanide
15	Aniline	46	Sodium nittroprusside
16	Ammonium acetate	47	Sodium nitrite
17	Ammonium molybdate	48	Sodium bicarbonate
18	Ammonium sulphate	49	Silver nitrate
19	Brady'sreagent	50	Bromine in HAC
20	Chlorine water	51	Pyridine
21	Copper sulphate		SOLIDS
22	Cobalt nitrate	52	Ferrous sulphate
23	Calcium chloride	53	Lead dioxide ( $\mathrm{PbO}_{2}$ )
24	Chloroform	54	Manganese dioxide $\left(\mathrm{MnO}_{2}\right)$
25	Ethanol	55	Oxalic acid
26	Fehling's solution A	56	Potassium dichromate ( $\left.\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
27	Fehling's solution B	57	Soda lime
28	Ferric chloride	58	Phthalic anhydride
29	Ferrous sulphate	59	Zinc dust
30	Ferric chloride(Neutral)	60	$\beta$-Naphthol
31	Schiff's reagent	61	Resorcinol

General Chemicals in liquid form having specific normality in the supplied bottles

Sl.   No.	Name of the acid	Percent by   weight	Approximate   specific gravity	Concentration
1.	Hydrochloric acid   $(\mathrm{HCl})$	36.5	1.18	11 N
2.	Nitric Acid   $\left(\mathrm{HNO}_{3}\right)$	70	1.42	16 N
3.	Sulphuric Acid   $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	98	1.84	36 N
4.	Aceticacid (glacial)   $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	99.6	1.05	17 N
5.	Ammonia   $\left(\mathrm{NH}_{3}\right)$	28	0.88	15 N

## Specific Reagents for Inorganic Experiments <br> B.Sc. I-Semester

## Preparation of Stock Solution

- Direct stock solution may be supplied for standardisation.
- For determination of the amount of substance, known volume of the solution may be given in 250 cc of volumetric flask and students should dilute the solution OR direct solution may be given.

SI.   No.	Name of solution	Concen tration	Method of preparation
1.	Sodium hydroxide ( NaOH )	0.5 N	Dissolve 20 g of NaOH in 1000cc distilled water.
	Sodium hydroxide ( NaOH )	0.1 N	Dissolve 4 g of NaOH in 1000cc distilled water.
	Sodium hydroxide ( NaOH )	0.05 N	Dissolve 2 g of NaOH in 1000cc distilled water.
2	Hydrochloric acid (HCl)	0.5 N	Dissolve 45 cc of conc. HCl in 1000cc distilled water.
	Hydrochloric acid (HCl)	0.05 N	Dissolve 4.5 cc of conc. HCl in 1000 cc distilled water
	Hydrochloric acid (HCl)	0.1 N	Dissolve 9.0 cc of conc. HCl in 1000 cc distilled water.
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH mixture:	-	$26.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+20 \mathrm{~g}$ of NaOH in 1000 cc distilled water.
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH mixture:	-	$13.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{~g}$ of NaOH in 500 cc distilled water.
4.	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3}$ mixture:	-	$26.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+42 \mathrm{~g} \text { of } \mathrm{NaHCO}_{3} \text { in } 1000 \mathrm{cc}$ distilled water.
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3}$ mixture:	-	$13.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}+21 \mathrm{~g} \text { of } \mathrm{NaHCO}_{3} \text { in } 1000 \mathrm{cc}$ distilled water.
5	Potassium permanganate $\mathrm{KMnO}_{4}:$	0.05 N	Dissolve 1.6 g AR $\mathrm{KMnO}_{4}$ in distilled water. Keep it over night, filter through glass wool. Dilute to 1000 cc . Store in brown coloured bottle. (Standardize the solution with sodium oxalate)
6	oxalic acid and sulphuric acid mixture:	-	31.5 g of oxalic acid is dissolved in minimum quantity of water, to this add 14 cc of sulphuric acid and diluted up to 1000 cc .
	oxalic acid and sulphuric acid mixture:	-	16 g of oxalic acid is dissolved in water, to this 7 cc of sulphuric acid is added and diluted to 5000 cc .
7	Mohr's solution (FAS):   Ferrous ammonium sulphate	0.5 N	Make a paste of 196.9 g of FAS with 10 cc of Sulphuric acid and dilute up to 1000 cc with distilled water.
	Mohr's solution (FAS):   Ferrous ammonium sulphate	0.05 N	Make a paste of 19.6 g of FAS +10 cc of Sulphuric acid and dilute up to 1000 cc with distilled water.
8.	Potassium dichromate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	0.05 N	$2.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ dissolved in 1000cc of distilled


			water (if necessary add 1cc of sulphuric acid)
9.	$\mathrm{Fe}^{+2}$ and $\mathrm{Fe}^{+3}$ ion mixture :	-	49 g of FAS +20 g of $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{cc}$ sulphuric acid make a paste dilute up to 500 cc with distilled water.
10.	Sodium thiosulphate :	0.05 N	Dissolve 12.5 g of Sodium thiosulphate in 1000cc distilled water
11.	EDTA:disodium etylenediammine tetra-acetate	0.05 M	Dissolve 18.6 g of disodium etylenediammine tetra-acetate in 1000 cc distilled water
12	Zinc sulphate solution:	0.5 M	143.7 g of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{cc}$ of sulphuric acid dilute up to 1000 cc with distilled water.
	Zinc sulphate solution:	0.05 M	14. $g$ of zinc sulphate +5 cc of sulphuric acid dilute up to 1000 cc with distilled water.
13	Buffer solution:	-	$17.5 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}+150 \mathrm{cc}$ of $17 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ solution further dilute with distilled water up to 250 cc .
14	Hard water:	-	Hard water (one $\mathrm{ml}=1 \mathrm{mg} \mathrm{CaCO} 3$ ) Add slowly a amount of dilute HCl through a funnel to 1 g of anhydrous $\mathrm{CaCO}_{3}$ (A.R grade) taken in a conical flask. Boil gently to remove $\mathrm{CO}_{2}$. Heat to dryness on a water bath. Dissolve in distilled water and dilute up to 1000 cc .
15	Iodine Solution (N/10)	-	Refer foot note
16	Alcoholic potassium hydroxide (N/2)	-	Dissolve 28 g of A.R potassium hydroxide in 1000cc of $95 \%$ alcohol(freshly distilled from KOH ) . Mix thoroughly and let stand undistilled for any carbonate to settle down. Decant the clear supernatant solution and use.
17	Bromine Solution	-	Prepare a saturated solution by shaking 11cc of liquid bromine with 1000 cc of distilled water.
18	Mercuric chloride	saturated	Dissolve 80 g of Mercuric chloride in a 1000cc of hot distilled water. Cool to room temperature and filter.
19	Potassium thiocynate	0.1M	Dissolve 9.7 g of A.R KSCN in a 1000 cc of distilled water
20	Stannous Chloride	0.1M	Dissolve 2.26 g of A.R Stannous Chloride in $5-6 \mathrm{ml}$ con HCl acid and diluted to 100 cc with water
	Stannous Chloride	5\%	Dissolve 50 g of A.R Stannous Chloride in 100 ml con HCl and diluted to 1000 cc with water.
21	KI	10\%	Dissolve 100 g of KI in a 1000 cc of boiled out distilled water.

Note: Place about 10 g of A.R KI and $2-3 \mathrm{cc}$ distilled water in a large weighing bottle fitted with a ground- glass stopper. Dissolve by gentle shaking and weigh accurately, after the bottle and the solution have reached room temperature. Introduce quickly $3.2-3.5 \mathrm{~g}$ of A.R or resublimed iodine into the weighing bottle. Without splashing and re-stopper it. Shake and let stand for some time. After the temperature has reached equilibrium, reweigh the bottle accurately.

The difference gives the weight of pure iodine. Dilute the solution in the weight of pure iodine. Dilute the solution in the weighing bottle and quickly transfer it quantitatively to a 250 cc measuring flask. Dilute up to mark with a distilled water. Stopper and keep in a dark place. The prepare solution is W X $4 / 126.9 \mathrm{~N}$ where W is weight of iodine dissolved. Make exactly $\mathrm{N} / 10$ by appropriate dilution.

BSc.VI SEMISTER
VOLUMETRIC ANALYSIS

$\begin{aligned} & \hline \text { SL } \\ & \mathrm{NO} \end{aligned}$	Experiment	Solution	Chemicals	Preparation
1	Experiment-1.   Extraction of Iron(III) from haematite ore	$\mathrm{Fe}^{3+}$ solution (Haematite ore or $\mathrm{SolidFe}_{2} \mathrm{O}_{3}$ Solution) 100 g of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or 50 g of anhydrous $\mathrm{FeCl}_{3}+10 \mathrm{cc}$ of Conc. HCl make a paste \& add water to make the volume 1000cc with water. Filter if necessary.	- $\mathrm{SnCl}_{2}$ solution   - $5 \% \mathrm{HgCl}_{2}$ solution   - Diphenylamine   - Phosphoric acid or $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.	- Dissolve 12 g of pure tin or 30 g of stannous chloride $\left(\begin{array}{ll}\mathrm{SnCl}_{2} & .2 \mathrm{H}_{2} \mathrm{O}\end{array}\right)$ in 100 cc conc. HCl and add 200 cc water.   - 5 g of $\mathrm{HgCl}_{2}$ in 100 cc water.   - 1 g in 100 cc Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
2	Experiment-2.   Extraction of Cu and Zn from brass	$\mathrm{Cu}^{2+}$ (Brass solution)   100 g of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{cc}$   conc. HCl dilute to 1000 cc   with water. OR 125 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{cc}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ dilute to 1000 cc with water.	- 1 N NaOH   - Dil. Acetic acid   - $10 \% \mathrm{KI}$   - Starch solution.	- 40 g NaOH in 1000cc water.   - 100 cc acetic acid + 100 cc water   - 100 g of KI in 1000cc water.
3	Experiment-3. Extraction of calcium from limestone.	To dissolve sample of limestone in minimum amount of $1: 1 \mathrm{HCl}$ dilute to 250 cc with distilled water.	- 5\% ammonium oxalate   - $1: 8 \mathrm{H}_{2} \mathrm{SO}_{4}$   - $\mathrm{NH}_{4} \mathrm{OH}$ Solution   - Methyl red indicator	- 5 g ammonium oxalate in 100 cc water   - 100cc $\mathrm{H}_{2} \mathrm{SO}_{4}+800$ cc water.   -(0.02\% methyl red solution in alcohol).

## Inorganic Gravimetric Determination

S.No.	Experiment Name	Solution Required	Chemicals And Materials
1	Experiment-1.   Determination of   Barium as $\mathrm{BaSO}_{4}$	$\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}-10 \%$   solution $100 \mathrm{~g} \mathrm{BaCl} 2.2 \mathrm{H}_{2} \mathrm{O}$   +5 cc of conc. HCl diluted   to 1000 cc with water.	- 2 N sulphuric acid solution -100 cc con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be added slowly to $900 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}$ with stirring.   - Whatman filter paper 40(41)
2	Experiment-2.   Determination of   Al as $\mathrm{Al}_{2} \mathrm{O}_{3}$	150 g of $\mathrm{AlCl}_{3 .} .6 \mathrm{H}_{2} \mathrm{O}+10$ cc of Conc. HCl or 106 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+10 \mathrm{cc}$ of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ make a paste \& add water to make the volume 1000 cc with water.	- 1:1 ammonia solution (100 cc Conc. ammonia solution+100 cc Dist. Water)   - $2 \% \mathrm{NH}_{4} \mathrm{NO}_{3}(20 \mathrm{~g}$ in 1000 cc of dist. water).   - 1-2 g NH4Cl. Whatman filter paper 40(41).   - Methyl red indicator ( $0.02 \%$ solution in alcohol).
3	Experiment-3.   Determination of iron as $\mathrm{Fe}_{2} \mathrm{O}_{3}$	140 g of $\mathrm{FeCl}_{3.6 \mathrm{H}_{2} \mathrm{O}}$ or 80 g of anhydrous $\mathrm{FeCl}_{3}+$ 10 cc of Conc. HCl make a paste \& add water to make the volume 1000cc with water.	- 1:1ammonia solution (100 cc Conc. ammonia solution +100 cc Dist.Water).   - $2 \% \mathrm{NH}_{4} \mathrm{NO}_{3}(20 \mathrm{~g}$ in 1000 cc of dist. water).   - $1-2 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$.   - Whatman filter paper 40(41).
4	Experiment-4.   Determination of   Lead as $\mathrm{PbSO}_{4}$	$\begin{aligned} & 100 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{cc} \text { of } \\ & \text { conc. } \mathrm{HNO}_{3} \text { diluted to } \\ & 1000 \mathrm{cc} \text { with water } \\ & \text { or } 100{\mathrm{gPb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}_{+ \text {little acetic acid diluted }}^{\text {to } 1000 \mathrm{cc} \text { with water. }} \end{aligned}$	- 2 N sulphuric acid solutions -100 cc conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be added slowly to $900 \mathrm{cc}_{\mathrm{H}_{2} \mathrm{O}}$ with stirring.   - $5 \%$ sulphuric acid solution -50 cc conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be added slowly to $1000 \mathrm{cc}_{\mathrm{H}}^{2} \mathrm{O}$ with stirring   - 50 cc Rectified spirit ( 800 cc alcohol + 200cc $\mathrm{H}_{2} \mathrm{O}$ )   - Whatman filter paper 40(41)


Specific Reagents for Organic Experiments   B.Sc. II semester			
ORGANIC PREPARATIONS			
$\begin{gathered} \hline \mathrm{Sl} \\ \mathrm{No} \\ \hline \end{gathered}$	Experiment Name	Chemical	Physical Constant
1	Preparation of acetanilide from aniline.	- 5cc of aniline,   - 6cc of glacial acetic acid   - pinch of zinc dust	M.P of Acetanilide $=114^{\circ} \mathrm{C}$
2	Preparation of phthalimide from phthalic anhydride.	- 4 g of phthalic anhydride   - 2 g of urea	M.P of phthalimide $=234^{\circ} \mathrm{C}$
3	Preparation of p nitroacetanilide from acetanilide.	- 5 g of acetanilide in 5 cc of glacial acetic acid   - 10 cc of sulphuric acid   - 6 cc of conc. nitric aci	M.P of p-nitro acetanilide $=214^{\circ} \mathrm{C}$
4	Preparation of aspirin from salicylic acid.	- 5 g of salicylic acid   - 10 cc of glacial acetic acid   - 1-2 drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	M.P of aspirin $=132-137^{\circ} \mathrm{C}$
5	Preparation of 1,1'-bis-2-Naphthol from 2Naphthol.	- 1.5 g of $2-\mathrm{Naphthol}$ in 20 ml water   - 3.0 g of $\mathrm{FeCl}_{3}$ in 10 ml water	$\begin{aligned} & \text { M.P of 1,1'-bis-2-Naphthol = } \\ & 218^{\circ} \mathrm{C} . \end{aligned}$
ORGANIC ESTIMATIONS			
$\begin{array}{\|l\|} \hline \text { SL } \\ \text { NO } \\ \hline \end{array}$	EXPERIMENT NAME	CHEMICALS	SOLUTION REQUIRED
6	Determination of Aniline / Phenol:	- Requirements:   - Conc. HCl   - Approximately 0.1 N Brominating Mixture.   - Exact 0.1N Sodium thiosulphate solution.   - $10 \%$ KI solution.   Starch solution.	Dissolve 5-6 grams of Aniline / Phenol and $5-6 \mathrm{ml}$ of Conc. HCl in water to obtain 1000 cc of solution.
7	Determination of Acetamide:	- Requirements:   - $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$   - 2. 1 N KOH   - 3.Phenolphthalein Indicator	Dissolve 15 grams of Acetamide in water to obtain 1000cc of solution
8	Determination of carboxylic acids.	- Requirements:   - 0.1 N NaOH   - Phenolphthalein Indicator	Instruct the candidates to prepare $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ and use it for standardization of NaOH
9	Determination of aspirin.	- Requirements:   - 0.2 N HCl   - 0.2 N NaOH   - Ethanol   - Phenolphthalein Indicator	Dissolve 7-8 grams of aspirin in water to obtain 1000cc of solution. OrDistribute 2 aspirin tablets to candidates

Preparation of Brominating mixture: 2.8 g of $\mathrm{KBrO}_{3}+15.5 \mathrm{~g} \mathrm{KBr}$ dilute up to mark in 1000cc flask with distilled water.

Specific Reagents for Organic ExperimentsB.Sc.V \& VI

Sl. No.	Reagents	Preparation of solution
1.	Dil. Acetic acid(5N)	287 cc conc.Acetic acid \& dilute it with 1000 cc of water.
2.	$\mathrm{NaHCO}_{3}$	100 g in 1000cc water. Or 250 g in 1 litre(3N)
3.	$\mathrm{NaOH}(10 \%)$	100 g in 1000cc water.
4.	Conc. NaOH	225 g in 1000cc water.
5.	Alcoholic KOH(10\%)	10 g KOH in 100cc 50\% alcohol
6.	$\mathrm{HCl}(5 \mathrm{~N})$	454 cc con. HCl diluted to 1000 cc .
7.	Bromine water	Dilute 10-15 cc liq.Bromine with 1 litre water. Or 5-6 cc liq. $\mathrm{Br}_{2}$ in 50 cc water containing 20 g KBr . Dilute to 200 cc .
8.	$\mathrm{Br}_{2}$ in acetic acid	20 cc Liq. $\mathrm{Br}_{2}$ in 80 cc glacial acetic acid
9.	$\mathrm{KMnO}_{4}$	1 g in 100 cc water( $1 \%$ ) : 6 g in 100 cc water(6\% )
10.	Alkaline $\mathrm{KMnO}_{4}$	3 g in 100 cc water containing $10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
11.	$\mathrm{FeSO}_{4}$ solution(fresh)	15 g mixted with $1-2 \mathrm{cc}$ con. $\mathrm{H}_{2} \mathrm{SO}_{4} \&$ dilute with 100 cc water.
12.	Neutral $\mathrm{FeCl}_{3}$ solution	10 g in 100 cc water
13.	Alcoholic $\mathrm{FeCl}_{3}$ solution	10 g in 100 cc alcohol
14.	$\mathrm{CaCl}_{2}$ solution	Dissolve 55 g of hydrated $\mathrm{CaCl}_{2}$ in 1 litre water.
15.	$\mathrm{NaNO}_{2}$ solution(10\%)	10 g in 100 cc water.
16.	Sodium nitroprusside	Dissolve 3g of compound in 1 litre.
17.	Brady's reagent(2,4 DNP)	Add $4 \mathrm{~g} \mathrm{2,4}$ dinitro phenyl hydrazine to 8 cc con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ add slowly with shaking \& cooling   70cc Methyl alcohol \& make up to 100 cc with water.
18.	Iodine solution (for iodoform)	$20 \mathrm{~g} \mathrm{KI} \& 10 \mathrm{~g}$ Iodine in 100 cc water.
19.	Picric acid	5 g in 100 cc alcohol or 100 cc benzene or glacial acetic acid
20.	$\beta$-naphthol	10 g of compound in $100 \mathrm{cc} 10 \% \mathrm{NaOH}$.
21.	Schiff's reagent	Rosaniline hydrochloride ( 0.2 g ) is dissolved in 100 cc water. \& solution is saturated with $\mathrm{SO}_{2}$ when colour of solution just vanishes.
22.	Hydroxylamine hydrochloride	5 g in 100 cc methyl alcohol.
23.	Tollen's reagent	2-3 drops of dil. $\mathrm{NaOH}(1 \%)$ solution to $5 \mathrm{cc} \mathrm{AgNO}_{3}$. White ppt. obtained is dissolved in ammonia.

## Specific Reagents for Physical Chemistry Experiments <br> B.Sc. III semester

Sl No.	Experiment name	Solutions required
1	Viscosity	Toluene and Carbon tetrachloride
2	Surface tension (Parachor of $\mathrm{CH}_{2}$ )	Benzene as liquid A. Toluene as liquid B o-Xylene as liquid C.
3	Surface tension ( atomic parachor)	Toluene, Xylene amd n-Hexane
4	Second order reaction	0.05 N potassium iodide, $0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, 0.002 \mathrm{~N} \mathrm{Na}_{2}$ $\mathrm{S}_{2} \mathrm{O}_{3}$, Freshly prepared starch
5	Heat of Neutralization	$0.5 \mathrm{~N} \mathrm{NaOH}, 0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$, Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Phenolphthalein indicator
6	First order reaction	Methyl acetate, $0.5 \mathrm{~N} \mathrm{HCl}, 0.5 \mathrm{H}_{2} \mathrm{SO}_{4}$ 0.01 N NaOH ,, Phenolphthalein indicator
7	Heat of Solution	0.5 N NaOH , Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{KNO}_{3}$ Phenolphthalein indicator
8	Adsorption	$0.1 \mathrm{~N} \mathrm{NaOH}, \quad 0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ Phenolphthalein indicator, Charcoal
9	Distribution	Benzoic acid, 0.1 N NaOH , Phenolphthalein indicator

## First order reaction

## Calculation of ' $V$ ' ${ }_{\infty}$ for 5 cc of Methyl acetate

1. Mol weight of methyl acetate $=74.03$ and density $=0.932 \mathrm{~g} / \mathrm{cc}$
2. Density $=$ mass $/$ volume : $\quad$ volume $=74.03 / 0.932=79.48 \mathrm{cc}$
$\therefore \quad$ When 5 cc of Methyl acetate with 100 cc of 0.5 N HCl , is used, then its concentration in the reaction mixture is
79.48 cc dissolved in $1000 \mathrm{cc}=1 \mathrm{~N}$
7.948 cc dissolved in $100 \mathrm{cc}=1 \mathrm{~N}$
$\therefore \quad 5 \mathrm{cc}$ diluted to $(100+5) \mathrm{cc}=5 \times 105 / 100 \times 7.948=0.66 \mathrm{~N}$
5 cc of 0.66 N of methyl acetate when titrated with 0.1 N NaOH ( volume=B.R.)

$$
=0.66 \times 5 / 0.1=33 \mathrm{cc}
$$

$\mathbf{V}_{\infty}=\mathrm{V}_{0}$ (Zero time B.R. for HCl (say for 24 cc ) +33 cc for methyl acetate)
$V_{\infty}=24+33=57 \mathrm{cc}$ for $100 \%$ hydrolysis
But $\mathbf{1 0 0 \%}$ hydrolysis is not possible $\therefore \mathbf{7 5 \%}$ may be considered.
Hence, $75 \%$ hydrolysis $\mathbf{V}_{\infty}=\mathbf{V}_{\mathbf{0}}+75 \%$ of 33

$$
\begin{aligned}
& =24+24.75=48.75 \sim 48.0 \mathrm{cc} \\
\therefore \quad V_{\infty} & =48.0 \mathrm{cc}
\end{aligned}
$$

Specific Reagents for Physical Chemistry Experiments

Sl.No	Name	Concent ration	Preparation
1	Sodium hydroxide Eq. wt. $=40 \mathrm{~g}$	1 N	Dissolve 40 g in 1000 cc of distilled water.
		0.1 N	Take 100 cc 1 N NaOH solution +900 cc distilled water.
		0.2 N	Take 400 cc of $0.5 \mathrm{~N} \mathrm{NaOH}+600 \mathrm{cc}$ of distilled water.
		0.5 N	Take 1000 cc of $1 \mathrm{~N} \mathrm{NaOH}+1000 \mathrm{cc}$ distilled water.
2	Hydrochloric acid Lab normality $=11$	1 N	By dissolving 100 cc conc. HCl in 900 cc of distilled water it gives 1000cc of 1 N HCl solution.
		0.1 N	Take 100 cc of $1 \mathrm{~N} \mathrm{HCl}+900 \mathrm{cc}$ of distilled water it gives 0.1 N HCl solution.
		0.5 N	Take 1000 cc of $1 \mathrm{~N} \mathrm{HCl}+1000 \mathrm{cc}$ distilled water it gives 2000 cc of 0.5 N HCl solution.
3	Sodium thiosulphate Mol.wt. $=249$	0.1 N	Dissolve 24.9 mg of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 1000 cc of distilled water it gives 0.1 N solution.
		0.002 N	Dissolve $0.498 \mathrm{~g} \sim 0.500 \mathrm{~g}$ in 1000 cc of distilled water gives 0.002 N solution.
		0.01 N	Dissolve 2.49 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 1000cc of distilled water.
4	Potassium per sulphate Mol.wt=270	0.05 N	Dissolve 6.8 g of potassium per sulphate in 1000 cc of distilled water it gives 0.05 N solution.
5	Potassium iodide Mol.wt=166	0.05 N	Dissolve 8.3 g of KI in 1000ccf distilled water.
		0.1 N	Dissolve 16.6 g of KI in 1000cc distilled water.
6	Potassium chloride Eq. wt. $=74.56 \mathrm{~g}$	1 N	74.56 g of KCl dissolved in 1000cc distilled water
		0.1 N	7.456 g of KCl dissolved in 1000cc distilled water
7	Sodium chloride   Eq. wt. $=58.457 \mathrm{~g}$	1 N	Dissolve 58.5 g of NaCl in 1000cc distilled water
		0.1 N	Dissolve 5.85 g of NaCl in 1000cc of distilled water
		0.2 N	Dissolve 11.7 g of NaCl in 1000cc of distilled water
		0.5 N	Dissolve 29.25 g of NaCl in 1000cc of distilled water
8	Oxalic acid Eq. wt. $=63.04 \mathrm{~g}$	1 N	Dissolve 63.04 g of oxalic acid in 1000 cc of distilled water
		0.1 N	Dissolve 6.304 g of oxalic acid in 1000 cc of distilled water
		0.5 N	Dissolve 31.52 g of oxalic acid in 1000 cc of distilled water
9	Acetic acid Molarity=17.4/L	1N	Dissolve 57.47 cc of acetic acid in 1000cc of distilled water
		0.1 N	Dissolve 5.74 cc of acetic acid in 1000cc of distilled water
		0.5 N	Dissolve 28.73 cc of acetic acid in 1000 cc of distilled water


		0.2 N	Dissolve 11.48cc of acetic acid in 1000cc of distilled water
10	Ferrous ammonium sulphate(FAS)   Mol. wt. $=392.2 \mathrm{~g}$	1N	Dissolve 392.2 g of FAS in 1000 cc of distilled water. ( 100 cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+900 \mathrm{ccc}$ distilled water)
		0.1 N	Dissolve 39.22g of FAS in 1000cc of distilled water. (100cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+900 \mathrm{ccc}$ distilled water)
11	Potassium dichromate Eq. wt. $=49.04 \mathrm{~g}$	1N	Dissolve 49.04 g of potassium dichromate in 1000 cc of distilled water.
		0.1 N	Dissolve 4.904 g of potassium dichromate in 1000 cc of distilled water.
12	Sulphuric acid (98\%)   Lab normality=36.8	2N	Dissolve 56cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1000 cc of distilled water.
		4N	Dissolve 112cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1000 cc of distilled water.
		0.5 N	Dissolve 14 cc of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1000 cc of distilled water
13	Ferric alum (Ferric thiocyanate complex)	0.001 N	Dissolve 1 g of Ferric alum in 50 cc of conc. HCl and dilute upto1000cc with distilled water.
14	KCNS	2\%	Dissolve 20 g of KCNS in 1000cc of distilled water.
15	Phenolphthalein indictor	-	Dissolve 500 mg of phenolphthalein powder in 500 cc of absolute alcohol. Test with NaOH it gives pink colour.
16	Copper sulphate Mol. wt. =249.5	0.1M	Dissolve 24.95 g of copper sulphate in 1000 cc of distilled water. (Add 2 or 3 drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ )
17	Sodium acetate   Mol. wt. $=82 \mathrm{~g}$	0.1M	Dissolve 8.2 g of sodium acetate in 1000 cc of distilled water.
		0.025 M	Dissolve 2.05 g of sodium acetate in 1000 cc of distilled water.
18	Ethyl acetate Mol. wt. $=96 \mathrm{~g}$	0.1M	Dissolve 9.6 g of Ethyl acetate in 1000 cc of distilled water.
19	Silver nitrate   Mol. wt. $=169.86 \mathrm{~g}$	0.01 M	Dissolve 1.698 g of silver nitrate in 1000cc of distilled water.
		0.02M	Dissolve 3.397 g of silver nitrate in 1000cc of distilled water.

## Preparation of liquid mixtures for Refractometry and Viscosity

Calculation of volume required to prepare the binary liquid mixture

1) Liquid ' $A$ ' is Benzene $d=0.87 \mathrm{~g} / \mathrm{cc} \quad$ 2) Liquid ' $B$ ' is Carbon tetrachloride $d=1.59 \mathrm{~g} / \mathrm{cc}$
$\mathrm{M}_{1:} \quad$ a) $40 \%$ ' A ' by weight: Calculation of volume of 40 g of Benzene

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{40}{0.87}=46 \mathrm{cc}
$$

b) $60 \%$ 'B' by weight: Calculation of volume of 60 g of Carbon tetrachloride

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{\mathbf{6 0}}{\mathbf{1 . 5 9}}=37.7 \mathrm{cc}
$$

$\mathrm{M}_{2}$ : a) $50 \%$ 'A' by weight: Calculation of volume of 50 g of Benzene

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{\mathbf{5 0}}{\mathbf{0 . 8 7}}=57.5 \mathrm{cc}
$$

b) $50 \%$ ' B ' by weight: Calculation of volume of 50 g of Carbon tetrachloride

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{50}{1.59}=31.5 \mathrm{cc}
$$

$\mathrm{M}_{3}$ : a) $60 \%$ ' A ' by weight: Calculation of volume of 60 g of Benzene

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{\mathbf{6 0}}{\mathbf{0 . 8 7}}=69.00 \mathrm{cc}
$$

b) $40 \%$ ' A ' by weight: Calculation of volume of 40 g of Carbon tetrachloride

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{40}{1.59}=25.2 \mathrm{cc}
$$

$\mathrm{M}_{4}$ : a) $70 \%$ ' A ' by weight: Calculation of volume of 70 g of Benzene

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{\boldsymbol{d}}=\frac{\mathbf{7 0}}{\mathbf{0 . 8 7}}=80.5 \mathrm{cc}
$$

b) $30 \%$ ' B ' by weight: Calculation of volume of 30 g of Carbon tetrachloride

$$
\mathrm{d}=\frac{M}{V} \quad \mathrm{v}=\frac{M}{d}=\frac{30}{1.59}=18.9 \mathrm{cc}
$$

Unknown ' $C$ ': 55\% of 'A' $+\mathbf{4 5 \%}$ of 'B'

$$
\begin{array}{cc}
\mathrm{d}=\frac{M}{V} & \mathrm{v}=\frac{M}{d}=\frac{55}{0.87}=63.2 \mathrm{cc} \\
\mathrm{~d}=\frac{M}{V} & \mathrm{v}=\frac{M}{d}=\frac{45}{1.59}=28.3 \mathrm{cc} \\
\mathrm{~A}+\mathrm{B}=\text { Benzene }+ \text { Carbon tetra chloride } \\
\mathrm{M}_{1}=40 \% \mathrm{~A}+60 \% \mathrm{~B}=46 \mathrm{cc}+37.7 \mathrm{cc} \\
\mathrm{M}_{2}=50 \% \mathrm{~A}+50 \% \mathrm{~B}=57.5 \mathrm{cc}+31.5 \mathrm{cc} \\
\mathrm{M}_{3}=60 \% \mathrm{~A}+40 \% \mathrm{~B}=69.0 \mathrm{cc}+25.2 \mathrm{cc} \\
\mathrm{M}_{4}=70 \% \mathrm{~A}+30 \% \mathrm{~B}=80.5 \mathrm{cc}+18.9 \mathrm{cc}
\end{array}
$$

Unknown: Liquid ' C ' $=55 \%$ Benzene $+\mathbf{4 5 \%} \mathrm{CCl}_{4}=63.2 \mathrm{cc}+28.3 \mathrm{cc}$

## General Instructions to the Examiners

## B.Sc Semesters I

## Inorganic

i. In a batch of ten students at least two different acid- base and two different redox / complexo metric titration experiments may be distributed to the students.
ii. It may be reversed in the subsequent batches to cover eight experiments.
iii. Selection of experiments may be done by the students based on lot.
iv. Discourage the students to use chart but may be allowed to refer whenever necessary.
v. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
vi. Distribute: $20,22,24,26,28 \& 30 \mathrm{cc}$ at random in 250 cc volumetric flask or $8,10,12 \& 14$ at random in 100 cc volumetric flask.
vii. Instruct the candidates to use $25 \mathrm{cc} / 10 \mathrm{cc}$ diluted solution for determination.
viii. Ask the candidate to prepare the required solutions in $250 \mathrm{cc} / 100 \mathrm{cc}$
ix. Experiments related to reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$, iodimetry and determination of temporary, permanent and total hardness of water using standard EDTA method may be avoided for examination.
x. However, such experiments should be performed in regular practicals.

B.Sc.I sem   Distribution of Marks:	
Accuracy	10 marks
Standardization titration	
Main titration	16 marks
Technique \& Presentation	04 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks


Deduction of Marks for accuracy	
Standardization titration	Main titration
$\pm 0.2 \mathrm{cc}-10$ marks	$\pm 0.2 \mathrm{cc}-16$ marks
$\pm 0.4 \mathrm{cc}-08$ marks	$\pm 0.4 \mathrm{cc}-14$ marks
$\pm 0.6 \mathrm{cc}-06$ marks	$\pm 0.6 \mathrm{cc}-12$ marks
$\pm 0.8 \mathrm{cc}-04$ marks	$\pm 0.7 \mathrm{cc}-10$ marks
Above $\pm 0.8 \mathrm{cc}-$ zero marks	$\pm 0.8 \mathrm{cc}-08$ marks
	$\pm 0.9 \mathrm{cc}-06$ marks
	above $\pm 1.0-$ zero mark

## B.Sc Semesters II

Organic

## General Instructions to the Examiners

i. In a batch of ten students, for six students preparation experiments and for four students determination experiments may be given in the practical examination.
ii. Two different preparation experiments and two different determination experiments may be distributed to the students.
iii. Selection of experiments may be done by the students based on lot. Discourage the students to use chart but may be allowed to refer whenever necessary.
iv. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.

B.Sc.II sem   Organic Preparation experiments   Distribution of Marks	
Yield	16 marks
Nature of crystals	04 marks
Technique \& Presentation	04 marks
Purity and M.P(4+2)	06 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks


Deduction of Marks for accuracy   in Preparation experiments
Error in yield   less than $10 \%-16$ marks
$11-15 \%=14$ marks
$16-20 \%=12$ marks
$21-25 \%=10$ marks
More than $30 \%=$ zero mark


B.Sc.II sem   Organic Determination experiments   Distribution of Marks:	
Accuracy	10 marks
Blank titration	16 marks
Main titration	04 marks
Technique \& Presentation	05 marks
Journal	05 marks
Viva-Voce	40 marks
Total	


Deduction of Marks for accuracy in   Determination experiments:	
Blank titration	Main titration
$\pm 0.2$ cc -08 marks	$\pm 0.2 \mathrm{cc}-12 \mathrm{marks}$
$\pm 0.4 \mathrm{cc}-06$ marks	$\pm 0.4$ cc- 10 marks
$\pm 0.6$ cc- 04 marks	$\pm 0.6 \mathrm{cc}-08$ marks
$\pm 0.8$ cc- 02 marks	$\pm 0.7$ cc- 06 marks
Above $\pm 0.8$ cc   zero marks	$\pm 0.8$ cc- 04 marks
	$\pm 0.9$ cc- 02 marks
	above $\pm 0.9 \mathrm{cc}-$ zero mark

## B.Sc Semesters III <br> Physical

General Instructions to the Examiners
i. In a batch of ten students, not more than two students should get the same experiment in the practical examination.
ii. Selection of experiments should be done by the students based on lots.
iii. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
iv. During practical examination chart is not allowed, wherever necessary simple procedure may be given.
v. Determination of percentage composition by viscosity method may be avoided in examination.

## Distribution of marks for accuracy- 18 marks

1. First order and second order reactions.
a. For accuracy in calculation of ' $k$ ' by formula method: any three ' $k$ ' values from each set, matching with the expert values may be considered. Each carries 3 marks.
b. For accuracy in calculation of ' $k$ ' from graphical method, each set carries 9 marks.

## 2. Enthalpy of ionization and solution

a. Water equivalent of calorimeter carries 06 marks.
b. Enthalpy of ionization or solution carries 12 marks.
c. 06 marks shall be deducted if water equivalent of calorimeter is not in between $0.45 \& 0.52$ KJ.
d. Under such condition use 0.52 KJ as water equivalent of calorimeter and calculate the enthalpy of ionization / solution.
3. Surface tension - Parachor of $\mathrm{CH}_{2}$
a. Determination of atomic parachor carries 18 marks
b. Each liquid carries 06 marks

## 4. Surface tension-atomic parachor

a. Determination of atomic parachor carries 18 marks
b. 09 marks may be deducted if parachor of $\mathrm{CH}_{2}$ is not in between 38-40.
c. Under such condition use 39 as parachor of $\mathrm{CH}_{2}$ and calculate the atomic parachor of ' C ' and 'H'.

## 5. Viscosity of pure liquids

a. 06 marks for determination of density of liquids: each liquid carries 03 marks.
b. 12 marks for determination of viscosity coefficient of liquids: each liquid carries 06 marks.

## 6. Viscosity of liquids: percentage composition

a. 03 marks for determination of density of liquid ' $C$ '.
b. 15 marks for determination of percentage composition of liquid ' $C$ '.

## 7. Distribution

Any three ' $\mathrm{K}^{\mathrm{I}}$ ' values matching with the expert values may be considered: each carries 06 marks.

## 8. Adsorption

a. Any three burette readings after adsorption matching with the expert values may be considered: each carries 06 marks.
b. Do not take in to account of magnitude of $n$ and $K$ for accuracy.
9. Determination of degree of dissociation of $\mathbf{K C l}$ by Landsberger's method.
a. Each degree of dissociation carries 06 marks: total - 18 marks.
b. Degree of dissociation should be decreased with increase in concentration of KCl .

B.Sc.III sem   General distribution of Marks:	
Accuracy	18 marks
Technique and Presentation	03 marks
Calculation and graph(5+4)	09 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks


General deduction of Marks for accuracy:	
Error up to $5 \%$	$=18$ marks
$6-10 \%$	$=15$ marks
$11-15 \%$	$=12$ marks
$16-20 \%$	$=6$ marks
above $20 \%$	$=$ zero $(0)$ mark


Deduction of Marks for accuracy in   $12+06$ System:		
Error	Against   marks 12	Against   marks 06
up to 5\%	12 marks	06 marks
$6-10 \%$	10 marks	05 marks
$11-15 \%$	08 marks	04 marks
$16-20 \%$	05 marks	02 marks
above 20\%	zero $(0)$ mark	zero $(0)$ mark

## B.Sc Semester IV

## INORGANIC CHEMISTRY EXPERIMENTS:

## General Instructions to the Examiners

i. In a batch of ten students, not more than two students should get the same mixture in the practical examination.
ii. Determination of DO, COD and BOD experiments may be avoided in examination.
iii. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
iv. Discourage the students to use chart but may be allowed to refer whenever necessary.

Semi-micro qualitative analysis of mixtures of two simple inorganic salts containing two anions and two cations.
Anions: $\mathrm{CO}_{3}{ }^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$
Cations: $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{+3}, \mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$and $\mathrm{NH}_{4}{ }^{+}$.

- Mixture having Phosphate / oxalate radical may not be given.
- Salts with following combinations may be given.

Sl.No	Mixtures	Sl.No	Mixtures
1	$\mathrm{CaCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$	15	$\mathrm{BaCl}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
2	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$	16	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{MgCO}_{3}$
3	$\mathrm{MgSO}_{4}+\mathrm{ZnS}$	17	$\mathrm{KCl}+\mathrm{ZnS}$
4	$\mathrm{CaCO}_{3}+\mathrm{KBr}$	18	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NaCl}$
5	$\mathrm{BaCl}_{2}+\mathrm{KBr}$	19	$\mathrm{BaCl}_{2}+\mathrm{NH}_{4} \mathrm{Br}$
6	$\mathrm{ZnSO}_{4}+\mathrm{MgCO}_{3}$	20	$\mathrm{MgSO}_{4}+\mathrm{ZnCO}_{3}$
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{FeSO}_{4}$	21	$\mathrm{KCl}+\mathrm{FeSO}_{4}$
8	$\mathrm{FeSO}_{4}+\mathrm{ZnCO}_{3}$	22	$\mathrm{MgSO}_{4}+\mathrm{ZnCO}_{3}$
9	$\mathrm{FeSO}_{4}+\mathrm{KNO}_{3}$	23	$\mathrm{FeSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
10	$\mathrm{NiCO}_{3}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	24	$\mathrm{NiSO}_{4}+\mathrm{KBr}$
11	$\mathrm{MnSO}_{4}+\mathrm{KBr}$	25	$\mathrm{NiSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
12	$\mathrm{CuSO}_{4}+\mathrm{KNO}_{3}$	26	$\mathrm{CuSO}_{4}+\mathrm{KBr}$
13	$\mathrm{PbCO}_{3}+\mathrm{NH}_{4} \mathrm{Br}$	27	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
14	$\mathrm{MnSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$		


B.Sc.IV sem   Distribution of Marks:	
Preliminary tests and presentation (6+2)	08 marks
Negative radicals(group test + C.T) $(2+3) \times 2$	10 marks
Positive radicals (group test + C.T) $2+4) \times 2$	12 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks

## ORGANIC CHEMISTRY EXPERIMENTS: Paper-I <br> ( Solid- Solid Mixture) <br> General Instructions to the Examiners

i. In a batch of ten students, not more than two students should get the same mixture in the practical examination.
ii. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
iii. For Separation of Organic Mixture and Qualitative Analysis of Organic compounds the binary mixtures of organic compounds may be prepared by mixing two compounds of different nature.
iv. The acids and phenol compounds should not be mixed and hence such mixture may not be given.
v. One pure organic compound from the separated mixture may given for analysis after separation.
vi. During practical examination chart may be referred whenever necessary

Acids: Salicylic, Cinnamic, Phthalic and Anthranilic acid.
Phenol: $\alpha$-naphthol, $\beta$-naphthol.
Base: p-toluidine, m-nitroaniline and p-nitroaniline.
Neutral: Naphthalene, Acetanilide, Diphenyl, Benzamide, Benzophenone and m-
dinitrobenzene.
NOTE:

Sl. No.	Mixture of Solid organic compounds		Nature	Mixture of Solid organic compounds	
	Compound   for analysis	Compound   for analysis		Compound   for analysis	Compound   for analysis
1.	Salicylic acid	Acetanilide	$\mathrm{A}+\mathrm{N}$	Acetanilide	Cinnamic acid
2.	p-nitroaniline	Salicylic acid	$\mathrm{A}+\mathrm{B}$	Salicylic acid	o-nitroaniline
3.	$\alpha-$ naphthol/   $\beta$-naphthol	Benzamide	$\mathrm{P}+\mathrm{N}$	$\beta$-naphthol	Naphthalene
4.	Benzophenone	$\alpha-$ naphthol/   $\beta-$ naphthol	$\mathrm{N}+\mathrm{P}$	$\alpha$-naphthol	Benzamide
5.	p-toluidine	Cinnamic acid	$\mathrm{A}+\mathrm{B}$	Cinnamic acid	p-toluidine
6.	m-dinitrobenzene	Phthalic acid	$\mathrm{N}+\mathrm{A}$	m-dinitrobenzene	p-nitroaniline
7.	p-toluidine	Diphenyl	$\mathrm{B}+\mathrm{N}$	Benzamide	p-nitroaniline
8.	Benzophenone	Phthalic acid	$\mathrm{N}+\mathrm{A}$	Diphenyl	Phthalic acid
9.	Anthranilic acid	m-   dinitrobenzene	$\mathrm{A}+\mathrm{N}$	Anthranilic acid	$\mathrm{m}-$   dinitrobenzene
10.	$\beta$-naphthol	Benzophenone	$\mathrm{P}+\mathrm{N}$	$\beta$-naphthol	Benzophenone

A new compound may be given for preparation of derivative when the given compound for analysis fails / tedious to give the derivative.

B.Sc.V Sem   Paper-I :Organic   Separation \& Qualitative Analysis   Eistribution of Marks	
Nature \& Separation (2+3)	05 marks
Preliminary test	02 marks
Element test	04 marks
Physical Constant	03 marks
Functional Group test	04 marks
Identification \& structure	03 marks
Preparation of derivative	03 marks
Physical constant of derivative	03 marks
Systematic Presentation	03 marks.
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks

## B.Sc Semester V

## PHYSICAL CHEMISTRY EXPERIMENTS: Paper -II

## General Instructions to the Examiners

i. In a batch of ten students, not more than two students should get the same experiment in the practical examination.
ii. Selection of experiments may be done by the students based on lots.
iii. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
iv. Out of 18 marks reserved for accuracy, 06 marks shall be distributed for determination of cell constant in the conductometric experiments wherever applicable.
v. During practical examination chart is not allowed, wherever necessary simple procedure may be given.
vi. pH of biological Juices may not be given in examination.

B.Sc.V sem   General distribution of Marks:	
Accuracy	18 marks
Technique and Presentation	03 marks
Calculation and graph(5+4)	09 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks


General deduction of Marks for accuracy:	
Error up to $5 \%$	$=18$ marks
$6-10 \%$	$=15$ marks
$11-15 \%$	$=12$ marks
$16-20 \%$	$=6$ marks
above $20 \%$	$=$ zero $(0)$ mark


Deduction of Marks for accuracy in   $12+06$ System:		
Error	Against   marks 12	Against   marks 06
up to 5\%	12 marks	06 marks
$6-10 \%$	10 marks	05 marks
$11-15 \%$	08 marks	04 marks
$16-20 \%$	05 marks	02 marks
above $20 \%$	zero $(0)$ mark	zero $(0)$ mark

## B.Sc Semester VI

## Inorganic Chemistry Experiments:Paper-I Gravimetric and Volumetric Analysis General Instructions to the Examiners

i. In a batch of ten students in the practical examination, five students may be given volumetric determination and preparation of complexes (if time permits) and the other five students may be given gravimetric determination.
ii. Selection of experiments may be done by the students based on lots.
iii. Viva questions may be asked on any of the experiments prescribed in the practical syllabus.
iv. Discourage the students to use chart but may be allowed to refer whenever necessary and instruct to use electronic balance for weighing.
v. Out of 12 experiments in Inorganic Chemistry, only 07 experiments (four gravimetric and three volumetric experiments) are to be given.
vi. Preparation of complex may be given if time permits; otherwise the marks allotted for preparation (Yield of the complex-06marks) may be added to accuracy in volumetric analysis.

## Inorganic Volumetric Determination

1. Extraction of Iron(III) from haematite ore or solid $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and determination of percentage of iron in the solution using standard $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution(internal indicator method).

Distribution: 20, 22, 24, 26, $28 \& 30 \mathrm{cc}$ at random in 250 cc volumetric flask flasks may be given. Or $10,11,12,13,14 \& 15 \mathrm{cc}$ at random in 100 cc volumetric flask flasks may be given. Instruct the candidates to use 25 cc diluted solution for determination and to prepare 0.05 N $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
2. Extraction of Cu and Zn from brass and determination of percentage of copper in the solution using standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.

Distribution: 18, 20, 22, 24, $26 \& 28 \mathrm{cc}$ in 250 cc at random in 250 cc volumetric flask may be given. Or $09,10,11,12,13 \& 14 \mathrm{cc}$ in 100 cc at random in 250 cc volumetric flask may be given.

## Instruct the candidates -

i. To dilute $\mathrm{Cu}^{2+}$ or Brass solution to 250 cc in a volumetric flask and use 25 cc diluted solution for determination
ii. To prepare $0.05 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$.
3. Extraction of calcium from limestone and determination of percentage of calcium in the solution by oxalate method.

Limestone - Distribution: $0.300,0.350,0.400,0.450 \& 0.500 \mathrm{~g} \mathrm{CaCO}_{3}$ to candidates

## Instruct the candidates -

i. To dissolve sample of limestone in minimum amount of $1: 1 \mathrm{HCl}$ dilute to $250 / 100 \mathrm{cc}$ with distilled water.
ii. To use 25 cc diluted solution for determination and to prepare $0.1 \mathrm{~N} \mathrm{KMnO}_{4}$.

InorganicVolumetric \& Preparation Experiments   Distribution of Marks:   Accuracy   For two titre values(2×5)   Yield of the complex   Technique \& Presentation   Calculation   Journal   Viva-Voce   Tour Report or Project Report 02 marks	
Total	02 marks

## Inorganic Gravimetric Determination

1. Determination of Barium as $\mathrm{BaSO}_{4}$

Distribution: $22,24,26,28,30,32,34 \& 36 \mathrm{cc}$ at random in 250 cc volumetric flask may be given or. $11,12,13,14,15,16,17 \& 18 \mathrm{cc}$ at random in 100 cc volumetric flask may be given. Instruct the candidates to use 25 cc diluted solution for determination.
2. Determination of Al as $\mathrm{Al}_{2} \mathrm{O}_{3}$

150 g of $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{cc}$ of Conc. HCl or 106 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+10 \mathrm{cc}$ of Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ make a paste \& add water to make the volume to 1000 cc .
Distribution: 26, 28, 30, 32, $34 \& 36 \mathrm{cc}$ at random in 250 cc volumetric flask or $11,12,13$, $14,15,16,17 \& 18 \mathrm{cc}$ at random in 100 cc volumetric flask may be given.

## 3. Determination of iron as $\mathrm{Fe}_{2} \mathrm{O}_{3}$

140 g of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or 80 g of anhydrous $\mathrm{FeCl}_{3}+10 \mathrm{cc}$ of Conc. HCl make a paste \& add water to make the volume 1000 cc .

Distribution: 26, 28, 30, 32, $34 \& 36 \mathrm{cc}$ at random in 250 cc volumetric flask may be given. Instruct the candidates to use 50 cc diluted solution for determination.

## 4. Determination of Lead as $\mathrm{PbSO}_{4}$

$100 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{cc}$ of conc. $\mathrm{HNO}_{3}$ diluted to 1000 cc . or1 $00 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}+$ little acetic acid diluted to 1000 cc .

Distribution: 26, 28, 30, 32, $34 \& 36 \mathrm{cc}$ at random in 250 cc volumetric flask or 13, 14, 15, $16,17 \& 18 \mathrm{cc}$ at random in 100 cc volumetric flask may be given. Instruct the candidates to use 25 cc diluted solution for determination.

Note: Industrial study tour report or Project work report is compulsory. The report carries $\mathbf{1 0}$ marks and it should be submitted in paper-I practicals.

The following projects may be considered Soil analysis, water analysis, sewage water treatment and management, ion exchange methods, chromatography, preparation and assay of organic compound of pharmaceutical importance, effect of pesticides and insecticides, milk analysis, chemical processes in; textile industries / fertilizer industries/ dairy industries / chemical industries / ceramic industries / sugar industries/ oil industries / solvent extraction / liquor industries, alternate sources of generating electric power / engine fuel (apart from these, any other projects of student interest may also be considered).

B.Sc.VI sem: Paper-I   Inorganic Gravimetric experiments   Distribution of Marks:	
Accuracy	16 marks
Technique and calculation	04 marks
Journal	05 marks
Viva-Voce	05 marks
Tour Report or Project Report	10 marks
Total	40 marks


Deduction of Marks for accuracy   in Gravimetric experiments:
$\pm 6 \mathrm{mg}-16 \mathrm{marks}$
$\pm 8 \mathrm{mg}-14$ marks
$\pm 10 \mathrm{mg}-12 \mathrm{marks}$
$\pm 12 \mathrm{mg}-10$ marks
$\pm 14 \mathrm{mg}-08$ marks
$\pm 16 \mathrm{mg}-06$ marks
above $\pm 16 \mathrm{mg}$ - zero (0) mark

## B.Sc VI Semester :Paper -II

## Organic Experiments( Liquid - Liquid mixture)

General Instructions to the Examiners
i. In a batch of ten students in the practical examination, five students may be given experiment number 1-6 (binary mixture) and remaining five students may be given experiment number 7-12 (physical experiments).
ii. Selection of experiments may be done by the students based on lot.
iii. In a batch of five students in the practical examination(1-6), not more than two students should get the same mixture.
iv. Viva questions may be asked on any of the experiments prescribed in the practical syllabus. Discourage the students to use chart but may be allowed to refer whenever necessary.

## Instructions to the Examiners for Organic Experiments

1. The experiments are to be allotted for physical and organic by lot system.
2. For Separation of Organic Mixture and Qualitative Analysis of Organic compounds, the binary mixtures of organic compounds can be prepared by mixing two compounds one from low boiling and other from high boiling liquid as given below. And one pure organic compound is given for analysis.

Low Boiling: ethyl acetate, acetone, toluene, chlorobenzene.
High Boiling: phenol, aniline, nitrobenzene, benzaldehyde, acetophenone, bromobenzene.
3. Following binary liquid mixtures can be given.

Sl.No.	Mixture of liquid Organic compounds		Compound for   analysis	Compound for   analysis
1.	Aniline- $184^{\circ} \mathrm{C}$	Ethyl acetate- $77^{\circ} \mathrm{C}$	Ethyl acetate	Aniline
2.	Acetone- $56^{\circ} \mathrm{C}$	Nitrobenzene $-209^{\circ} \mathrm{C}$	Acetone	Nitrobenzene
3.	Toluene $-110^{\circ} \mathrm{C}$	Benzaldehyde- $179^{\circ} \mathrm{C}$	Toluene	Benzaldehyde
4.	Acetone- $56^{\circ} \mathrm{C}$	Bromobenzene- $155^{\circ} \mathrm{C}$	Bromobenzene	Acetone
5.	Acetophenone- $202^{\circ} \mathrm{C}$	Chlorobenzene- $132^{\circ} \mathrm{C}$	Acetophenone	Chlorobenzene
6.	Phenol $-182^{\circ} \mathrm{C}$	Toluene $-110^{\circ} \mathrm{C}$	Toluene	Phenol
7.	Acetone- $56^{\circ} \mathrm{C}$	Toluene $-110^{\circ} \mathrm{C}$	Acetone	Toluene
8.	Nitrobenzene- $209^{\circ} \mathrm{C}$	Ethyl acetate- $77^{\circ} \mathrm{C}$	Nitrobenzene	Ethyl acetate
9.	Ethyl acetate- $77^{\circ} \mathrm{C}$	Bromobenzene- $155^{\circ} \mathrm{C}$	Ethyl acetate	Bromobenzene
10	Toluene- $110^{\circ} \mathrm{C}$	Acetophenone- $202^{\circ} \mathrm{C}$	Toluene	Acetophenone

4. A new compound may be given for preparation of derivative when the given compound for analysis fails / tedious to give the derivative.

B.Sc.VI sem   Paper-II : Organic Separation \& Qualitative Analysis Experiments   Distribution of Marks	
Separation	03 marks
Preliminary test	02 marks
Nature	02 marks
Element test	04 marks
Physical Constant	03 marks
Functional Group test	04 marks
Identification \& structure	03 marks
Preparation of derivative	03 marks
Physical constant of derivative	03 marks
Systematic Presentation	03 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks

## B.Sc VI Semester- Paper -II

## PHYSICAL CHEMISTRY EXPERIMENTS

Instructions to the Examiners for Physical Experiments
i. In a batch of five students in the practical examination(7-12), not more than two students should get the same experiment.
ii. Selection of experiments may be done by the students based on lot.
iii. Out of 18 marks reserved for accuracy, 06 marks may be distributed for determination of cell constant in the conductometric experiments wherever applicable.
iv. Charts and scientific calculators are not allowed.

B.Sc. VI Semester- Paper -II   Physical Experiments   Distribution of Marks:	
Accuracy	18 marks
Technique \& Presentation	03 marks
Calculation \& Graph (5+4)	09 marks
Journal	05 marks
Viva-Voce	05 marks
Total	40 marks


Deduction of Marks for accuracy in   Physical Experiments
Error up to 5\%-18 marks
$6-10 \% \quad 15$ marks
$11-15 \% 12$ marks
$16-20 \% 06$ marks
Above 20\% 00 marks
More than 30\% zero (0) mark

## B.Sc. Sem I <br> Inorganic Chemistry: Volumetric Analysis

## Expt.: To determine the $\mathrm{HCl} / \mathrm{NaOH} / \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{FAS} / \mathrm{Fe}^{2+} / \mathrm{Zn}^{2+}$ volumetrically (perform marked expt.)

Standardize the given solution of $\qquad$ by preparing $100 / 250 \mathrm{cc}$ $\qquad$ $0.05 \mathrm{~N} / 0.1 \mathrm{~N}$ standard solution of $\qquad$ . Determine the amount of $\qquad$ present in 100/250 cc volumetric flask bearing your table number and in $1 \mathrm{dm}^{3}$ using the above standardized solution.

## Instructions:

1. Chart and Scientific Calculator are not allowed.
2. Dilute the given $\qquad$ solution up to the mark with distilled water, shake it well and use 25 ml of the diluted solution for determination.
3. Prepare $100 / 250 \mathrm{cc}$ $\qquad$ $0.05 \mathrm{~N} / \mathrm{M}$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O} /$ Mohr's salt $/ \mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
4. Write all the reactions involved.
5. Get all readings initialed by the examiner.
6. Present your results as below.

## Results:

1. 25 cc of $\qquad$ solution required 1. $\qquad$ 2. $\qquad$ cc of $\qquad$ solution.
2. Normality/Molarity of the prepared standard solution of $\qquad$ is $\qquad$ N/M.
3. Normality/Molarity of the given standardized solution of $\qquad$ is $\qquad$ N/M.
4. Amount of $\qquad$ present in given 100/250 ml solution is $\qquad$
5. Amount of $\qquad$ present in $1 \mathrm{dm}^{3}$ is $\qquad$ g

## B.Sc. Sem II <br> Organic Chemistry-Estimation

## Expt. No.1: To determine the amount of ANILINE/PHENOL( perform marked expt.)

You are given a solution of Aniline/Phenol in 100/250 cc volumetric flask bearing your table number. Determine the amount of Aniline/Phenol present in the given solution volumetrically by bromination method.

## INSTRUCTIONS:

a) Chart and Scientific Calculator are not allowed.
b) Dilute the given solution up to the mark in the flask with distilled water and use $10 / 25 \mathrm{cc}$ of the diluted solution for the each determination.
c) Standardization: Standardize the given brominating solution ( 0.1 N approx) supplied in Bottle 'A' by titrating $10 / 25 \mathrm{ml}$ of this solution against standard 0.1 N sodium thiosulphate solution supplied in Bottle 'B'. Take at least two readings.
d) Main titration: Take at least two readings for the main titration.
e) Get all readings initialed by the examiner.
f) Present your results as below.

## RESULTS:

1. $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required for 25 cc of the brominating solution (Blank Titration)
i)
cc
ii)
cc
2. 0.1 N sodium thiosulphate required for excess of brominating solution added (Main Titration)
i) $\quad \mathrm{cc}$ ii) cc
3. Amount of Aniline/Phenol in the given solution g.

## Expt. No.2: To determine the amount of ACETAMIDE

You are given a solution of Acetamide in 100/250 cc volumetric flask bearing your table number.
Determine the amount of Acetamide present in the given solution volumetrically.
INSTRUCTIONS:
a) Chart and Scientific Calculator are not allowed.
b) Add $25 \mathrm{~cm}^{3}$ of KOH solution to the given acetamide solution in a conical flask and boil it with reflux condenser for 1 hour.
c) Standardization: Dilute the KOH solution up to the mark in the flask with distilled water and use 25 ml of the diluted solution for the each titration. Take at least two readings.
d) Main Titration: Take at least two readings for the main titration.
e) Get all readings initialed by the examiner.
f) Present your results as below.

## RESULTS:

1. $\quad 0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ required for 25 cc of the dilute KOH solution:(Blank titration Reading)
i) cc ii) cc
2. $\quad 0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ required for 25 cc of the dilute solution after hydrolysis :
(Main titration Reading) i) cc ii) cc
3. Amount of Acetamide in the given solution .................. g.

## Expt. No.3: To determine the amount of Carboxylic Acid

You are given a solution of Carboxylic acid in 100/250 cc volumetric flask bearing your table number.
Determine the amount of Carboxylic acid present in the given solution volumetrically.

## INSTRUCTIONS:

1. Chart and Scientific Calculator are not allowed.
2. Dilute the given solution up to the mark in the flask with distilled water and use 25 cc of the diluted solution for each determination.
3. Standardization: Standardize the given NaOH supplied in Bottle ' B ' by titrating 25 cc of this solution against standard 0.1 N oxalic acid solution. Take at least two readings.
4. Main Titration: Take at least two readings for the main titration.
5. Get all readings initialed by the examiner.
6. Present your result as below.

## RESULTS:

1. $\qquad$ N NaOH required for 25 cc of the 0.05 N oxalic acid solution(StandardizationTitration):
 i) cc ii) cc
2. __ N NaOH required for $25 \mathrm{~cm}^{3}$ of the diluted carboxylic acid solution:
i) cc ii) cc
3. Normality of carboxylic acid ............N.
4. Amount of carboxylic acid present in $1 \mathrm{dm}^{3}$ ..g
5. Amount of carboxylic acid present in given solution ......... .g

## Expt. No.4: To determine the amount of ASPIRIN

You are given a solution of aspirin in 100/250 cc conical flask bearing your table number. Determine the amount of aspirin present in the given solution volumetrically.
INSTRUCTIONS:

1. Chart and Scientific Calculator are not allowed.
2. To the given aspirin solution, add 25 cc of NaOH solution and warm it for 15 minutes.
3. Standardization: Titrate 25 cc NaOH solution against standard ( 0.2 M exact) HCl solution. Take at least two readings.
4. Main titration: Titrate reaction mixture containing aspirin (after hydrolysis) against standard HCl solution. Take at least two readings.
5. Get all readings initialed by the examiner.
6. Present your results as below.

## RESULTS:

$\qquad$ N HCl required for 25 cc of the NaOH solution (Blank Titration):
i) cc ii) cc
2. $\qquad$ NHCl required for 25 ml of the reaction mixture containing aspirin (after hydrolysis) (Main Titration): i) cc ii) cc
3. Amount of aspirin present in given solution $\qquad$ .g

Note: Marks are reserved for accuracy, calculation, Journal and viva - voce.

* Student can ask an additional 30 minutes to complete the practical if necessary

Expt. No.5: To Prepare acetanilide / phthalimide /1,1'-bis-2-naphthol/ p-nitroacetanilide using the appropriate starting material supplied to you in the container.( perform marked expt.)
INSTRUCTIONS:
a) Chart and Scientific Calculator are not allowed.
b) Follow the usual procedure.
c) Write all the reactions and mention the quantities of reagents used.
d) Recrystalise a small amount of compound with suitable solvent.
e) Record the M.P. of the recrystalised compound and get initialed by examiner.
f) Record the yield and submit the crude product in a packet bearing your table number.

## B.Sc. Sem III <br> Physical Experiments

## Chart and Scientific Calculator are not allowed in the examination.

## First Order reaction

Q.No.1: To study the effect of acid strength on hydrolysis of methyl acetate using HCl and $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$

Perform the experiment as follows

## Set - I : 5 cc Methyl acetate $+\mathbf{0} .5 \mathrm{NHCl}$ (Reaction mixture)

- Pipette out 5 cc of reaction mixture and titrate against 0.1 N NaOH at the interval of $0,10,20,30$, 40 and 50 minutes.
- Present the results in the following tabular form.

The titre value after completing the reaction $\mathrm{V}_{\infty}$ : $\qquad$ cc

Initial Concentration, $\mathrm{a}=\mathrm{V}_{\infty}-\mathrm{V}_{0}=$ $\qquad$ cc

## Table

Time   $(\min )$	Vol of NaOH   $(\mathrm{cc})$	$\mathrm{x}=$	$\mathrm{a}-\mathrm{x}=$		
0	$\mathrm{~V}_{\mathrm{o}}=$		$\log (\mathrm{a}-\mathrm{x})$	k	
10	$\mathrm{~V}_{\mathrm{t}}=$				
20	$\mathrm{~V}_{\mathrm{t}}=$				
30	$\mathrm{~V}_{\mathrm{t}}=$				
40	$\mathrm{~V}_{\mathrm{t}}=$				
50	$\mathrm{~V}_{\mathrm{t}}=$				

- Set II: Repeat the same with 5cc methyl acetate $+\mathbf{0 . 5 N} \mathrm{H}_{2} \mathrm{SO}_{4}$
- Calculate the first order rate constant ' k ' for the marked:

1. Formula method (take mean of k as $\mathrm{k}_{1}$ for HCl and $\mathrm{k}_{2}$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$ )
2. Graphical method.

- Calculate relative strengths of both the acids.


## Second order reaction

Q.No.2:To study the second order reaction between potassium iodide and potassium persulphate and show that the velocity constant is independent upon concentration by performing the experiment at different concentrations ( $a=b$ only) of KI and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ at least in two sets as below.

Perform the experiment as follows:

- Set -I : 50 cc of 0.05 N KI +50 cc of $0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (Reaction mixture)
- Pipette out 10 cc of reaction mixture and titrate against $0.002 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at the intervals of $5,10,15,20,25$ and 30 minutes.
- Calculate initial concentration ' $a$ ' for both sets.
- Present the results in the following tabular form.


## Table I

Time in   minute	Titre readings   ' x 'in cc	$\mathrm{a}-\mathrm{x}$	$\frac{1}{\mathrm{a}-\mathrm{x}}$	k
5				
10				
15				
20				
25				
30				

- Set II: Repeat the experiment with reaction mixture:
$\mathbf{2 5} \mathbf{c c} 0.05 \mathrm{~N} \mathrm{KI}+25 \mathrm{cc} 0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+50 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}$.
- Calculate the second order rate constant ' $k$ ' for the marked:

1. Formula method
2. Graphical method.

Compare the ' $k$ ' of both the sets and comment.

## Adsorption

Q.No.3: To study the adsorption of acetic acid on activated charcoal in the following concentrations.

## Perform the experiment as follows:

- Prepare the different concentrations of acetic acid as in table 1.

Table 1:

Bottle No.	1	2	3	4	5
0.5N acetic   acid (cc)	50	40	30	20	10
Water (cc)	0	10	20	30	40

- Add 1 g . activated charcoal to each bottle.
- Stopper the bottles, shake well for about 30 minutes and keep them in water bath to attain lab temperature.
- Titrate the acetic acid against $\mathbf{0 . 1 N} \mathbf{N a O H}$ as given in table 2 .

Table 2 :

Bottle	Titre readings		Conc. of acid		Amount of acid   No.	Before   adsorpti   on	After   adsorption
1			Before   adsorption   $\mathrm{C}_{0}$	After   adsorption   (equilibrium)   $\mathrm{C}_{\mathrm{e}}$	gram of   charcoal   X $=\mathrm{C}_{0}-\mathrm{C}_{\mathrm{e}}$	$\log$   X	log
2							
$\mathrm{C}_{\mathrm{e}}$							
3							
4							
5							

- Volume of 0.1 N NaOH required for 5 cc original $\mathrm{CH}_{3} \mathrm{COOH}$ is $\mathrm{V}=$ $\qquad$ .cc
- Calculate $C_{0} \& C_{e}$ using titre readings.
- Plot a graph of $\log$ ' $x$ ' against $\log C_{e}$ and calculate ' $n$ ' and ' $K$ '


## Viscosity of Pure liquids

Q.No.4: To determine the density and viscosity coefficient of liquids A and B, given that Viscosity coefficient of water $=0.0089$ poise.

Perform the above experiment using Ostwald's Viscometer:

## Surface Tension

Q.No.5:To determine the surface tension of benzene, toluene and xylene by the drop number method and calculate the parachor of $\mathrm{CH}_{2}$.

Given : Surface tension of water is 72 dyne / cm
Given: Mol Mass of Benzene $=78 ; \quad$ Toluene $=92 ; \quad$ Xylene $=106$
Given: Density of Benzene $=0.878 ;$ Toluene $=0.866 ; \quad$ Xylene $=0.881 \mathrm{~g} / \mathrm{cc}$

## Surface Tension( Atomic parachor)

Q.No.6: To determine the surface tension of toluene, xylene and n-hexane by the drop number method and and calculate the atomic parachor of Carbon and Hydrogen.

Given : Surface tension of water is 72 dyne / cm
Given: Mol Mass of Toluene $=92$; Xylene=106: Hexane $=86$
Given: Density of Toluene $=0.866 ;$ Xylene $=0.881$ : Hexane $=0.655 \mathrm{~g} / \mathrm{cc}$

## Distribution

Q.No.7: To study the distribution of benzoic acid between water and toluene.

Perform the experiment as follows: Prepare solution mixtures as given in table 1.
Table-1:

Bottle No.	Volume of water (cc)	Volume of toluene   (cc)	Wt.of benzoic   acid.(gram)
1	80	20	0.5
2	80	20	1.0
3	80	20	1.5
4	80	20	2.0

- Stopper the bottles; shake well for about 30 minutes keep them in water bath to attain lab temperature.
- Titrate benzoic acid in toluene and water layers against 0.1 N NaOH as given in table 2 . Calculate K and $\mathrm{K}^{\mathrm{I}}$; and comment.


## Table-2:

Bottle   No.	Burette reading of 0.1 N NaOH		Concentration of benzoic acid		$\mathrm{K}=\mathrm{C}_{1} / \mathrm{C}_{2}$	$\mathrm{K}^{\mathrm{I}}=\mathrm{C}_{1} / \sqrt{\mathrm{C}_{2}}$
	Aqueous layer ( 25 cc )	Toluene layer (5 cc)	Aqueous layer ( $\mathrm{C}_{1}$ )	Toluene layer ( $\mathrm{C}_{2}$ )		
1						
2						
3						
4						

## Viscosity (percentage composition)

Q.No.8:To determine the viscosity of binary liquid mixtures of Toluene \& carbon tetrachloride and calculate their percentage composition of unknown mixture. Determine the density of Mixture. Given that Viscosity coefficient of water $=0.0089$ poise.

Perform the experiment using Ostwald's Viscometer:

## Calorimetry (Enthalpy of ionization)

Q.No.9: To determine the enthalpy of ionization of acetic acid by calorimetric method.

Perform the above experiment as follows:

- Determine the water equivalent of calorimeter using 2 cc concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 98 cc of water.
- Determine the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by titrating against 0.5 N NaOH .
- Find out the 'Q' liberated for $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ from the std. graph.
- Use 50 cc of $0.5 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ and 50 cc of 0.5 N NaOH for calculation of Enthalpy of ionization. Given: Enthalpy of strong acid and strong base: - $57.32 \mathrm{~kJ} / \mathrm{eqv}$.


## Ebullioscopy

Q.No.10: To determine the degree of dissociation of KCl by Landsberger's method.

Perform the experiment as follows:
Find out the boiling point of pure water and solutions of KCl having $0.5,1.0$ and 1.5 g in 15 cc water. Calculate Mol.wt. and degree of dissociation for all the concentrations of KCl .
(Given that the $\mathrm{K}_{\mathrm{b}}$ of water $=0.525$ )

## Calorimetry (Enthalpy of Solution)

Q.No.11: To determine the enthalpy of solution of $\mathrm{KNO}_{3}$ by calorimetric method.

Perform the experiment as follows:

- Determine the water equivalent of calorimeter using 2 cc concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 98 cc water.
- Determine the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by titrating against 0.5 N NaOH .
- Find out the 'Q' liberated for $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ from the std. graph.
- Use 2 g KNO 3 and 100 cc water and determine the enthalpy of Solution of $\mathrm{KNO}_{3}$.


## B.Sc. Sem IV <br> Inorganic Chemistry: Semi-micro Qualitative Analysis

Expt.: Semi-micro Qualitative Analysis of Inorganic salt mixture contains 04 radicals Instructions:

1. Chart is not allowed.
2. You are given a mixture containing 04 radicals in a capsule or beaker bearing your table number. Analyze and report two basic and two acidic radicals.
3. Present the analysis systematically in the answer paper.
4. Report the results as under.

Basic radicals	
$1 . \quad 1$.	Acidic radicals
2.	2.

## B.Sc. Sem V (Paper-I )

## Separation of Organic Mixture and Qualitative Analysis of Organic compound

Expt: You are given a binary mixture containing two organic solids in a beaker bearing your table number. Detect the nature of the two components and report to the examiner, separate two components after obtaining approval. Ask for the pure solid compound for analysis.

Instructions: Get the signature of the examiner for element test, physical constant, \& confirmatory tests of the compound \& M.P. of derivative.

NOTE: Chart is not allowed. Marks are separately reserved for actual separation, preliminary and solubility tests, physical constant, test for elements, functional groups, identification, correct name and structure, preparation of derivative \& its M.P., Practical record \& viva-voce.

## Report:

1. Soluble in
2. Physical constant(M.P.) :
3. Elements Present :
4. Functional group:
5. Name of the compound identified :
6. Its Structure :
7. Name of the Derivative :
8. M.P. of the Derivative :

## B.Sc. Sem. V- Paper II (Physical Chemistry)

Chart and Scientific Calculator are not allowed in the examination.

## Conductometric titration( HCl )

Q1. To determine the concentration of HCl solution by conductometric titration using the standard 0.5 N NaOH solution.

## Perform the experiment as follows:

- Pipette out 25 cc of given HCl solution and titrate against 0.5 N NaOH solution by adding 0.5 cc at a time.
- Record the Conductance for every addition up to 10.00 cc .
- Determine the end point graphically.
B.Sc. Sem. V- Paper II (Physical Chemistry)


## Conductometric titration $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

Q2. To determine the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ solution by conductometric titration using the standard 0.5 N NaOH solution.

## Perform the experiment as follows:

- Pipette out 25 cc of given $\mathrm{CH}_{3} \mathrm{COOH}$ solution and titrate against 0.5 N NaOH solution by adding 0.5 cc at a time.
- Record the Conductance for every addition up to 10.00 cc .
- Determine the end point graphically.


## B.Sc. Sem. V- Paper II (Physical Chemistry) <br> Conductometry (Dissociation constant)

Q3.To determine the dissociation constant of acetic acid conductometrically.

## Perform the above experiment as follows:

- Determine the Cell constant using 0.1 N KCl solution Pipette out 50.0 cc of given 0.1 N solution to a clean beaker and determine the conductance.
- Similarly, find the conductance for $0.05,0.025$ and 0.0125 N solution by half dilution method. Given: Specific conductance of $0.1 \mathrm{~N} \mathrm{KCl}=0.01286 \mathrm{~S} \mathrm{~cm}^{-1}$.


## B.Sc. Sem. V- Paper II (Physical Chemistry)

## Colorimetry ( $\mathbf{C u}^{2+}$ )

Q4. To verify the Beer-Lambert's law by colorimetric method and calculate the molar extinction coefficient of cuprammonium sulphate complex

## Perform the experiment as follows:

- Prepare 100 cc 2 M ammonia solution by measuring out 13.0 cc liquor ammonia.
- Prepare $100 \mathrm{cc} 0.01 \mathrm{M} \mathrm{CuSO}_{4}$ solution by weighing the solid $\mathrm{CuSO}_{4}$.
- Use this solution to prepare different concentration of cuprammonium sulphate complexes for 10.0cc each in 8 test tubes. Select a suitable filter.
- Find O.D. for all the solutions using selected filter.
- Calculate the molar extinction coefficient of cuprammonium sulphate complex graphically.


## B.Sc. Sem. V- Paper II(Physical Chemistry)

## Potentiometry ( Acid - Base titration)

Q5. To determine the concentration of strong acid by potentiometric titration against standard solution of 0.1 N NaOH .

## Perform the experiment as follows:

- Pipette out 25 cc of given hydrochloric acid, add a pinch of quinhydrone.
- Place the platinum and calomel electrodes in the solution and titrate against NaOH by adding one cc at a time.
- Note down EMF at each addition and determine the end point from both the plots of:

1. EMF Vs. Volume of NaOH
2. $\Delta \mathrm{E} / \Delta \mathrm{V}$ vs Volume of NaOH

## B.Sc. Sem. V- Paper II (Physical Chemistry) Potentiometry (dissociation constant)

Q6. To determine the dissociation constant $\mathrm{K}_{\mathrm{a}}$ of a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ potentiometrically by titrating against 0.2 N NaOH using quinhydrone and calomel electrodes.

## Perform the experiment as follows:

- Pipette out 25 cc of given acetic acid and add a pinch of quinhydrone.
- Place the platinum and calomel electrodes in the solution and titrate against NaOH by adding one cc at a time. Note down EMF at each addition.
- Determine the end point from the plot of EMF vs volume of NaOH and calculate $\mathrm{K}_{\mathrm{a}}$.

Given: $\mathbf{E}^{\mathbf{o}}$ calomel $=\mathbf{0 . 2 4 2 2}$ V

## B.Sc. Sem. V- Paper II (Physical Chemistry)

## Conductometry(equivalent conductance)

Q7. To determine the equivalent conductance of strong electrolyte $(\mathrm{NaCl})$ at infinite dilution $\left(\lambda_{\infty}\right)$.

## Perform the experiment as follows:

- Determine the Cell constant using 0.1 N KCl solution.
- Pipette out 50.0 cc of given 0.2 N NaCl solution to a clean beaker and determine the conductance.
- Similarly, find the conductance for $0.1,0.05,0.025$ and 0.0125 N solutions by half dilution method. Calculate $\lambda_{c}$ and $\lambda_{\infty}$.
- Given : Specific conductance of $0.1 \mathrm{~N} \mathrm{KCl}=0.01286 \mathrm{~S} \mathrm{~cm}^{-1}$.


## B.Sc. Sem. V- Paper II (Physical Chemistry) <br> Colorimetry $\left(\mathrm{Fe}^{3+}\right)$

Q8. To verify the Beer Lambert's Law by colorimetric method and determine unknown concentration of ferric $\left(\mathrm{Fe}^{3+}\right)$ ions in its thiocyanate complex.

## Perform the experiment as follows:

- Dilute the given 0.001 M (Ferric alum) solution up to the mark in 100 cc volumetric flask.
- Use this solution to prepare different concentration of ferric thiocyanate complexes using $2 \%$ KCNS for 10.0 cc each in 8 test tubes. Select a suitable filter.
- Find O.D. for all the solutions and a solution of unknown concentration using selected filter.


## B.Sc. Sem. V- Paper II (Physical Chemistry)

Conductometry( II order reaction)
Q9. To determine $2^{\text {nd }}$ order rate constant for soaponification of ethyl acetate by following progress of the reaction conductometrically.

## Perform the experiment as follows:

- Pipette out 20 cc of 0.1 M NaOH and 20 cc of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ in two separate clean and dry conical flasks.
- Add 40cc water to NaOH solution, mix them and note down the conductance immediately.
- Find the conductance of the reaction mixture for $1,2,3,4,5,6,7,8,9,10,15,20,25,30,35$ and 40minutes.
- Measure the conductance of the reaction mixture after 2 hrs from mixing time.
- Calculate the second order velocity constant, ' $\boldsymbol{k}$ ' using a suitable equation and mean k for the minutes 1 to 10 readings.
- Graphically also for the minutes 1 to 10 readings by ignoring other readings of higher minutes.


## B.Sc. Sem. V- Paper II(Physical Chemistry)

## Critical solution temperature

Q10. To determination of critical solution temperature of the partially miscible liquids (Water and Phenol).

## Perform the experiment as follows:

- Add phenol from burette $8,7 \ldots \ldots .1$. cc to the each of the test tubes and $1,2,3, \ldots \ldots . .8 \mathrm{cc}$ of distilled water to make 10cc in 08 different test tubes.
- Determine the temperature of each when the turbidity just disappear using water bath.

Given : Density of Phenol= $0.8 \mathrm{~g} / \mathrm{cc}$ and density of Water $=1.0 \mathrm{~g} / \mathrm{cc}$

## B.Sc. Sem. V- Paper II(Physical Chemistry)

## pH metry

Q.11. To prepare the acetate buffer solution. Determine the pH using pH meter and calculate the mole ratio for unknown composition..

## Perform the experiment as follows

- Prepare 0.2 N acetic acid and 0.2 N sodium acetate in $100 \mathrm{~cm}^{3}$ each.
- Prepare 10 different sets of solutions by mixing these solutions in a wide mouth test tubes for 10 cc solutions of $\mathrm{pH} 3.45,3.75,4.14,4.38,4.57,4.74,4.92,5.11,5.35,5.70$ and 6.02.
- Find out the pH of the above solutions pH metrically.
- Determine the pH of buffer solutions of unknown concentration


# B.Sc. Sem VI: Paper-I <br> Inorganic Chemistry: Volumetric Analysis and preparation 

Expt. No. 1: Determination of $\mathrm{Cu} / \mathrm{Ca} / \mathrm{Fe}$ Volumetrically \& Preparation (perform marked expt.)
You are given a solution/sample of brass / limestone /haematite in a volumetric flask/ bottle bearing your table number $\qquad$ . Determine the amount of $\qquad$ using the standard solution of $\qquad$ volumetrically. Calculate the amount of $\qquad$ present in the given solution/sample.

If time permits, prepare $\qquad$ from suitable starting materials and record the yield \& submit the dry complex ( not mandatory).

## Instructions:

1. Chart and Scientific Calculator are not allowed.
2. Dilute the given $\qquad$ solution up to the mark with distilled water, shake it well and use 25 cc of the diluted solution for determination.
3. Prepare 0.05 N solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
4. Use $\mathrm{KMnO}_{4}$ solution after standardizing in case of lime stone.
5. Get all readings initialed by the examiner. Present your results as below.

## Results:

6. 25 cc of $\qquad$ solution required 1. $\qquad$ 2. $\qquad$ 3. $\qquad$ cc of $\qquad$ solution.
7. Amount of $\qquad$ present in given solution is $\qquad$ g.

Note: Marks are reserved for accuracy, presentation, technique, calculation, viva voce and Practical record.
Q.No.2: Tour Report or Project Report

# B.Sc. Sem VI : Paper-I <br> Inorganic Chemistry: Gravimetric Analysis 

## Expt. No.2: Determination of $\mathbf{B a}^{2+} / \mathbf{A l}^{3+} / \mathbf{F e}^{\mathbf{2 +}} / \mathbf{F e}^{3+} / \mathbf{P b}^{2+}$ gravimetrically ( perform marked expt.)

You are given a solution of $\mathrm{Ba}^{2+} / \mathrm{Al}^{3+} / \mathrm{Fe}^{2+} / \mathrm{Fe}^{3+} / \mathrm{Pb}^{2+}$ in $100 / 250 \mathrm{cc}$ volumetric flask bearing your table number. Determine gravimetrically the amount of $\qquad$ present in the given solution.
Instructions: Chart and Scientific Calculator are not allowed.

1. Dilute the given $\qquad$ solution up to the mark with distilled water, shake it well and use $\mathbf{2 5 / 5 0}$ cc of the diluted solution for determination.
2. Get all weights initialed by the examiner
3. Present your results as below.

## Results:

1. $\mathbf{2 5} / \mathbf{5 0} \mathrm{cc}$ of the diluted solution gave $\qquad$ g of $\qquad$ $\left(\mathrm{BaSO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{PbSO}_{4}\right)$
2. Amount of $\qquad$ present in the given solution is $\qquad$ g.

Note: Marks are reserved for accuracy, presentation, technique, calculation, viva -voce and Practical record
Q.No.2.: Tour Report or Project Report

## B.Sc. Sem VI: Paper-II <br> Separation of Organic Mixture and Qualitative Analysis of Organic compound

Expt: You are given a binary mixture containing two organic liquids in a beaker bearing your table number. Separate the components by distillation and ask for the pure liquid for analysis.

NOTE: Chart is not allowed. Marks are separately reserved for actual separation, preliminary and solubility tests, physical constant, test for elements, functional groups, identification, correct name and structure, preparation of derivative \& its M.P.

## Report:

1. Soluble in :
2. Physical constant(B.P.):
3. Elements Present:
4. Functional group:
5. Name of the compound identified:
6. Its Structure:
7. Name of the Derivative :
8. M.P. of the Derivative :

## B.Sc. Sem VI : Paper-II <br> Physical Experiment :Chart and Scientific Calculator are not allowed.

## Conductometry ( acid mixture)

Q.No.1:To determine the concentrations of acids in a mixture of $\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COOH}$ conductometrically using standard 0.5 N NaOH .

## Perform the experiment as follows:

- Pipette out 50 cc of the given acid mixture solution in to a beaker and titrate against standard 0.5 N NaOH by adding 0.5 cc at a time till 15 cc and note the conductance of the solution.
- Determine the end point graphically by plotting a graph of conductance versus volume of NaOH .
- Calculate the strength of $\mathrm{HCl} \& \mathrm{CH}_{3} \mathrm{COOH}$ in terms of normality and grams per $\mathrm{dm}^{3}$.
B.Sc. Sem VI: Paper-II


## Conductometry (Solubility)

Q.No. 2.: To determine the solubility of sparingly soluble salt $\left(\mathrm{BaSO}_{4}\right)$ conductometrically.

## Perform the experiment as follows:

- Determine the cell constant of the given conductivity cell using 0.1 N KCl .
- Determine the conductance of water.
- Determine the conductance of supernatant solution of $\mathrm{BaSO}_{4}$ for at least 3 readings.
- Calculate solubility of $\mathrm{BaSO}_{4}$ both in $\mathrm{mol} / \mathrm{litre}$ and $\mathrm{g} /$ litre.

Given: 1. Specific conductance of $0.1 \mathrm{~N} \mathrm{KCl}=0.01288 \mathrm{~S} \mathrm{~cm}^{-1}$.
2. Molar Conductance of $\mathrm{BaSO}_{4}$ at infinite dilution, $\lambda^{0}{ }_{\mathrm{m}}=288.6$

## B.Sc. Sem VI: Paper-II

Potentiometry ( dissociation constant)
Q.No.3: To determine the dissociation constant $\mathrm{K}_{\mathrm{a}}$ of a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ potentiometrically by titrating against 0.2 N NaOH using quinhydrone and calomel electrodes.

## Perform the experiment as follows:

- Pipette out 25 cc of given acetic acid to 100 cc beaker and add a pinch of quinhydrone
- Place the platinum and calomel electrodes in the solution and titrate against 0.2 N NaOH by adding 1 cc at a time.
- Note down EMF after each addition.
- Determine the end point from the plot of EMF vs NaOH and calculate the Ecel 1 and ${ }_{\mathrm{Ka}}$.


## B.Sc. Sem VI: Paper-II

## Refractometry (formula method)

Q.No.4:To determine the percentage composition of A and B liquids in unknown composition, ' C ' by formula method, measuring their refractive indices using Abbe's Refractometer.

## Perform the experiment as follows:

- Determine the density of liquids, $\mathrm{A}, \mathrm{B}$ and C .
- Find out the RI for all the liquids. Calculate the percentage composition of A and B liquids in unknown composition, 'C' by formula.


## B.Sc. Sem VI: Paper-II

## Refractometry ( graphical method)

Q.No.5:To determine the percentage composition of A and B liquids in unknown composition, ' C ' by graphical method, measuring their refractive indices using Abbe's Refractometer.

Perform the experiment as follows:

- Determine the density of liquid, C.
- Find out the RI for all the liquids.
- Calculate the percentage composition of A and B liquids in unknown composition, ' C ' by graphically.
Given

Liquid	$\mathbf{A}$	$\mathbf{B}$	$\mathbf{C}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$
Percentage   Composition	100	100	-	$\mathrm{A}=40$	$\mathrm{~A}=50$	$\mathrm{~A}=60$	$\mathrm{~A}=70$
Density, g/cc	0.873	1.579		1.212	1.138	1.075	1.034

## B.Sc. Sem VI: Paper-II <br> Potentiometry (Solubility)

Q.No. 6 : To determine the solubility and solubility product of sparingly soluble silverchloride potentiometrically.Perform the experiment as follows:

- Construct the cell by taking 25 cc of given 0.01 N KCl solution with 2 drops $\mathrm{AgNO}_{3}$ in one beaker and $10 \mathrm{cc} 0.01 \mathrm{~N}_{\mathrm{AgNO}_{3}}$ in another beaker. Place silver electrodes in both the beakers.
- Connect the solutions internally with $\mathrm{NH}_{4} \mathrm{NO}_{3} / \mathrm{KNO}_{3}$ salt bridge and externally with the electrodes to potentiometer. Determine EMF of the cell.
- Repeat the same with $0.005,0.0025$ and $0.0125 \mathrm{~N} \mathrm{AgNO}_{3}$.
- Calculate the solubility \& solubility product of AgCl both in $\mathrm{mol} / \mathrm{dm}^{3}$ and $\mathrm{g} / \mathrm{dm}^{3}$


## B.Sc. Sem VI: Paper-II <br> Potentiometry (Redox)

Q.No.7: To determine the redox potential of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution by potentiometric titration against the standard solution of $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

## Perform the experiment as follows:

- Pipette out 25 cc of given ferrous sulfate solution and add $25 \mathrm{cc} 4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$.
- Place the platinum and calomel electrodes and titrate against $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution by adding 1 cc at a time up to 30cc. Note the EMF at each addition.
- Determine the end point from the plot of $\Delta \mathrm{E} / \Delta \mathrm{V}$ vs volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and half equivalence point from the plot of EMF vs volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Given: $\mathbf{E}^{\mathbf{c}}$ calomel $=\mathbf{0 . 2 4 2 2} \mathbf{V}$

Appendix 1 :

## LIST OF UNDERGRADUATE CHEMISTRY TEACHERS IN VARIOUS AFFILIATED COLLEGES:2017-18

Sl.No.	Name of the College	Name of Teacher	Ph. No.	E-Mail ID
1	1002: Karnatak Science College,Dharwad	M S Salunke	9448861528	
		S D Dummawad	9449188294	
		S M Tuwar	9449796557	
		V A Amminbhavi	9731574873	
		O Kotresh	9448838665	
		R G Kalkamkar	9902831760	
		Jayalaxmi K	9742079633	
		K S Katagi	9916248809	
		S P Masti	9980556298	
		Rajappa S K	9620626968	
2	1013 : Govt First Grade Arts/Comm/BBA College, Dharwad	Sangeeta Kulkarni	9916148463	
3	1015 : Govt First Grade Arts/Sci/Comm/ BBA College, Rajnagar, Hubli	R S Gurumath	8095483274	
4	1202: JSSArts/Commerce/ Science College, Dharwad	J G Baragi	9449190721	
		S B Mekali	9448148828	
		Venkatesh	9448777011	
		S S Kulkarni	9448629565	
		A.M. Shirahatti	9480555341	
		Mahesh R T	9740299477	
5	1204: BMHECS Kittel Science College ,Dharwad	B K Megalamani	9980067406	
		Stanley Peters	9141373549	
		Darla Lazarus	9343102306	
		A L Harihar	9379565950	
		Vimala G	9972205867	
6	1232: $\begin{aligned} & \text { KLES S K Arts/Hsk } \\ & \text { Science Inst, Hubli }\end{aligned}$	S N Sherewad	9886259857	
7	1234: Nehru Arts/Comm/Sci College,Hubli	Sardar Hussain	9481287238	
		M S Gulannavar	9738587562	
8	2201: KLES J T Arts/Sci/ Comm/BCA College,	S. M. Bangalore	9481527012	
		C Lingareddy	9448564349	

	Gadag-Betageri	S H Narasinavar	9448591348	
9	2205: KSS Arts/Sci/Comm College,Gadag	S K Vandakar	9886394167	
		C C Amattennavar	9945119572	
10	$\begin{aligned} \hline 2222: & \text { SKVP`S } \\ & \text { Arts/Sci/Comm } \\ & \text { College,Hole-Alur } \end{aligned}$	P S Kanavi	9449121688	
		S B Sajjanar	9945555084	
11	2230: AVVPs S A Arts/ Sci/Comm College, Naregal	A J Handi	9741782405	
12	3015 : Govt First Grade Arts/ Sci/Comm/BBA College, Haveri	Navyashree M O	9686653068	
13	3204 : MASC Arts/Sci/Comm College, Haunsabhavi	Srinivasareddy	9880944919	
		Ravi S Naik	9482211085	
14	3205 : KLES GH Arts/Sci/ Commerce Degree College ,Haveri	Vasudev Nayak	9449419740	
		N M Gundannavar	9986167290	
		S V Madiwale	9448340336	
		K H Byadagi	9448916002	
		S S Patil	9964833297	
15	3212 : RTES Arts/Sci/Comm College ,Ranebennur	S R Pratap	9449972628	
		H Manjunath	9448564626	
		B I Koli	9448326501	
		R D Nayak	9845130354	
16	7017 : Govt First Grade Arts/ Comm/Sci/BBA College, Karwar	K K Kerwadikar	9449629599	
		Ullas N Shetti	9448818242	
		A Pragasam	9845648560	
		Vinayak M Naik	9448866454	
		Preeti Tallur	9945072665	
17	7201: Gokhale Centenary Arts/Sci College, Ankola.	Imthyaz Ahmed Khan	9449369804	
		Sharada Airani	9448344973	
		J S Fernadies	9448223576	
18	7205: Anjuman Arts/ Sci/Comm College, Bhatkal	M K Shaikh	9886212692	
19	7210 : B N Degree College, Dandeli	F B Holi	9448722879	
		H H Adavi	9448611391	
		Shobha Sharma	9480561861	
		H Y Merwade	9448344996	
20	7214: SDM Arts/Comm/	P M Honnvar	9448153586	

	Science College ,   Honnavar	Sanjeev Nayak	9242280591	
21	7217: KCS Dr A V Baliga Arts/Sci College, Kumta	G T Kuchinad	9448526475	
		V M Pai	9480474458	
		S N Shetty	9448996383	
		N K Nayak	9448996212	
		Revati Nayak	9845836075	
22	7224: MM Arts/Science C ollege, Sirsi	A K Kini	9448965040	
		Ganesh Hegde	9242368889	
23	7227 : Mahasatee Arts/ Comm/Science College:Ulga - Karwar	C S Naik	9448679050	
24	MPES's S D M Arts, Science, Commerce \& B.B.A. College , Honnavar.	No Permanent Staff:   Attn. to Principal		
25	M G C Arts \& Commerce and G H D Science College , Siddapur.	No Permanent Staff:   Attn. to Principal		
26	SET Siddharth Degree College Harakali Shirali	No Permanent Staff:   Attn. to Principal		
27	Beena Vaidya   Commerce/Science College,   Murdeshwar	No Permanent Staff:   Attn. to Principal		
28	B R Tambakad First Grade Arts, Commerce and Science College, Hirekerur.	No Permanent Staff:   Attn. to Principal		
29	Ballary Rudrappa Education Trust's Arts,Commerce and Science College Motebennur	No Permanent Staff:   Attn. to Principal		
30	B.C.N Arts, Commerce \& Science College, Laxmeshwar	No Permanent Staff:   Attn. to Principal		
31	Vidya Arts/Science College, Gadag	No Permanent Staff:   Attn. to Principal		
32	Govt. First Grade College, Hulakoti	No Permanent Staff: Attn. to Principal		
33	Govt. First Grade College, Mundaragi	No Permanent Staff:   Attn. to Principal		
34	Govt. First Grade College, Gajendragad	No Permanent Staff:   Attn. to Principal		
35	Govt. First Grade College,	No Permanent		


	Naragund	Staff:   Attn. to Principal		
36	Govt. First Grade College,   Navalgund	No Permanent   Staff:   Attn. to Principal		
37	Govt. First Grade College,   Ranebennur	No Permanent   Staff:   Attn. to Principal		
38	Govt. First Grade College,   Sirsi	No Permanent   Staff:   Attn. to Principal		
39	Govt. First Grade College,   Haliyal	No Permanent   Staff:   Attn. to Principal		
40	Govt. First Grade College,   Kumta	No Permanent   Staff:   Attn. to Principal		
41	Govt. First Grade College,   Ankola	No Permanent   Staff:   Attn. to Principal		
42	Govt. First Grade College,   Honnavar	No Permanent   Staff:   Attn. to Principal		
43	Govt. First Grade College,   Bhatkal	No Permanent   Staff:   Attn. to Principal		

## Chemistry Teachers' Association of Karnatak University's

## Affiliated Colleges: CHEM - FORUM

## LIST OF CONVENTIONS HELD

Sl. No.	Conventions held	Year
1	Established in P.C. Jabin Science College, Hubli	1991-92
2	$01{ }^{\text {st }}$ Annual convention, B.N. College, Dandeli	1991-92
3	$02{ }^{\text {nd }}$ Annual convention, J. S. College, Dharwad	1992-93
4	$03^{\text {rd }}$ Annual convention, R.L.S. Science College, Belagavi	1993-94
5	$04^{\text {th }}$ Annual convention, K.C. P. Science College, Vijayapur	1994-95
6	$05^{\text {th }}$ Annual convention, H.S.K. Science Institute, Hubli	1995-96
7	$06^{\text {th }}$ Annual convention, BLDE's College, Jamakhandi	1996-97
8	$07^{\text {th }}$ Annual convention, KRC College, Bailhongal	1997-98
9	$08^{\text {th }}$ Annual convention, Basaveshwar College, Bagalkot	1998-99
10	$09^{\text {th }}$ Annual convention, Dr. A. V. Baliga College, Kumta	1999-2000
11	$10^{\text {th }}$ Annual convention, P.C. Jabin Science College, Hubli	2000-01
12	$11^{\text {th }}$ Annual convention, S.J. M. College, Ilkal	2001-02
13	$12^{\text {th }}$ Annual convention, B.N. College, Dandeli	2002-03
14	$13^{\text {th }}$ Annual convention, J.S. S. College, Gokak	2003-04
15	$14^{\text {th }}$ Annual convention, J. T. College, Gadag	2004-05
16	$15^{\text {th }}$ Annual convention, Karnatak Science College, Dharwad	2005-06
17	$16^{\text {th }}$ Annual convention, G. S. S. College, Belagavi	2006-07
18	$17^{\text {th }}$ Annual convention, R.T.E.S College, Ranebennur	2007-08
19	$18^{\text {th }}$ Annual convention, B.K. College, Belagavi	2008-09
20	$19^{\text {th }}$ Annual convention, S.D. M. College, Honnavar	2009-10
21	$20^{\text {th }}$ Annual convention, Kittel Science College, Dharwad	2010-11
22	$21^{\text {st }}$ Annual convention, S.A. College, Naregal	2010-12
23	$22^{\text {nd }}$ Annual convention, G.H. College, Haveri	2012-13
24	$23^{\text {rd }}$ Annual convention, G.C. College, Ankola	2013-14
25	$24^{\text {th }}$ Annual convention, Karnatak University, Dharwad	2017-18
26	$25^{\text {th }}$ Annual convention, Karnatak Science College, Dharwad	$\begin{gathered} 2018-19 \\ \text { (scheduled) } \end{gathered}$

## MODEL LABORATORY TABLES MODERN CHEMISTRY LABORATORY TABLE (INORGANIC / ORGANIC)



Dimension of the Inorganic and Organic Laboratory Table

1. Width: 54 Inches
2. Width: 30Inches
: for double working table (face to face with middle rack).
: for single working table (table position will be adjacent to the wall with single rack).
3. Height: 36 Inches
4. Length: Depending on the space available.

## Rack dimension to keep reagent bottles:

5. Height: 23 Inches
: face to face with middle rack.
6. Width: 09Inches
: face to face with middle rack.
7. Height: 23 Inches
: one side working - single rack.
8. Width: 05Inches
: one side working - single rack.
Dimension of the Physical Laboratory Table
9. Width: 54 Inches
: for double working table
10. Height: 36 Inches
11. Length: Depending on the space available.

Note: Surface of the Table is preferably wood; Alternative to wood would be Ceramic Tiles / toughen glass with 19 mm thickness (non breakable, heat and chemical resistant). Do not use ordinary table glass.

ECONOMY CHEMISTRY LABORATORY TABLE (INORGANIC / ORGANIC)


PHYSICAL CHEMISTRY LABORATORY


KARNATAK COLLEGE, DHARWAD Quality Education for all Illuminating at centenary celebration(1917-2017)


ABOUT CHEM-FORUM


Dr.S. M. Timar Pricside nt

Chem-Forum is a volunteer academic body that has all the under graduate Chemistry teachers of Karnatak University's affiliated Colleges, It is established as a platform to discuss the academic matters of chemistry, The necessity of such forum for Chemistry Teachers was discussed in the meeting held on $\mathbf{2 5}$ "Aug1991 at P. C. Jabin Science College, Hubli with a galaxy of 45 Chemistry teachers from 19 different constituent and affiliated colleges of Karnatak University and launched immediately on thesame day.
Themain aims and objectives of Chem-Forum areas follows:

1. To bring together all the Chemistry teachers of different Affiliated and Constituent Colleges of Karnatak University under one banner by conducting annual conventions to be hosted by various Colleges at least once in a year
2. To providea platform to express the views of chemistry teachers in the matters related to:

- Syllabi of undergraduateclasses,
- Methodology of teaching and evaluation,
- Organizing activities to assist and encourage academic excellence among Chemistry teachers, leading to M,Phil and $\mathrm{Ph}, \mathrm{D}$ degrees,
- Encourageinnovative methods to inspire and bring out the talents of students,
- Honor the retired teachers ofthat academicyear for their services rendered,
- Discuss the interdisciplinary academic matters progressed in the recent years,

All such discussions have to be taken in the annual conventions,
Earlier, it was in the jurisdiction of 07 districts, viz, Dharwad, Gadag, Haveri, Uttar Kannada, Belagavi, Vijaypur, and Bagalkoti, Now, it is confined to first 04 districts, The rest are with the Rani Channamma University, Belagavi.
As on today, the Chem-Forum hasconducted 24 annualconventions at various colleges and played a key role in revision of Syllabi during 1999 for Non-Semester course, 2005-06 for Semester structure and revision of Semester Syllabus during 2009-10, During 2009-10, three consecutive meetings were held one at Kittel Science College, and other at Karnatak Science College, and JSS College, Dharwad to finalize the Syllabus, Recently the forumactively has involved in revising the existing syllabus during 2011-12, and now releasing Lab Manual,
In all the walks of its activity, the forum extended a fullest support to Karnatak University for all its academic endeavors to incorporate in the UG Syllabus, Now, it is at the threshold of celebration of Silver Jubilee Annual Convention of Chem - Forum at Karnatak Science College, Dharwad on the occasion of Centenary Celebration of Karnatak College(1917-2017),


[^0]:    Therefore the negative radicals found are i) ---, ii)---.

